« Previous : 1 : 2 : 3 : 4 : 5 : ... 7 : Next »
항생제 내성은 단순히 세균이 항생제에 내성이 생겨 효과가 없어지는 문제로 끝나지 않습니다. 평범한 수술이나 화학요법 등은 모두 항생제에 의존적이기 때문입니다. 내성균이 광범위하게 퍼지면 우리가 당연하게 사용하던 현대 의약품은 대부분 쓸모가 없어지게 되며, 최악의 경우 페니실린을 발견한 1928년 이전으로 의학 수준이 퇴보할 수 있습니다. 인류는 작은 상처 또는 감염만으로도 생명을 잃을 수 있습니다.


<그림1. 항생제 이전 시대의 수술, 그림 출처 : BBC, newsbeat>

1928년 최초의 항생제 페니실린(Penicillin)을 발견한 알렉산더 플레밍은 이러한 항생제 내성 문제를 예견했었습니다.

“The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily under dose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant."
"누구든지 가게에서 페니실린을 살 수 있는 날이 올 것이다. 그렇게 된다면 무지한 사람들이 쉽게 약을 복용하는 위험한 상황이 발생할 것이다. 몸 안에 있는 세균이 약물에 노출됨으로써 그 세균이 내성을 갖게 될 것이다." 

- 알렉산더 플레밍, 1945년 노벨상 수상 강연 중


플레밍의 경고대로 우리는 내성균과 싸우고 있습니다. 항생제를 한 번도 사용하지 않은 아이들에게서 항생제 내성균이 발견되고 있으며, 여러 항생제에도 죽지 않는 다제내성균이 출현하고 있습니다. 다제내성균이란 세균이 여러 항생제에 내성을 나타내는 세균을 의미하며, 슈퍼박테리아(super bacteria)라고 불립니다. 이러한 다제내성균을 극복하기 위해서 보다 강력한 항생제의 개발과 항생제 오남용을 줄이는 노력이 필요합니다. 하지만 평균 10년이라는 개발소요시간과 8,000억에 이르는 투자비용은 신약개발을 주저하게 하고 있으며, 항생제 오남용에 대해서도 단순히 환자의 항생제 사용량을 줄인다고 해결될 문제가 아닙니다. 따라서 다양한 차원에서의 다제내성균에 대한 실태 파악 및 관리가 필요한 실정입니다.

사실 항생제는 사람뿐만 아니라 공중보건, 농축수산, 식품, 환경 등 다양한 분야에서 사용됩니다. 동물들의 내성균은 배설물을 통해 토양과 하천 그리고 공기 중으로 유입됩니다. 또 일부는 식품에 포함되어 최종적으로는 사람에게 전파됩니다. 앞서 언급한 바와 같이 결국 항생제를 먹지 않아도 내성균이 발생하는 아이러니한 상황이 벌어집니다. 이 때문에 항생제 내성 문제 해결을 위해서는 다양한 분야의 주체가 참여해야 합니다. 그동안 여러 주체들이 항생제 내성의 위험성을 인지하고 개별적으로 문제를 다루어 왔으나 다양한 분야 전문가와 관계부처 담당자들이 모여 정례적으로 논의하는 자리가 부족했으며, 현장에서 제기된 의견이 정책으로 연계되지 못하는 경향도 있었습니다. 이러한 문제를 해결하기 위해 최근 관계전문가와 정책담당자가 참여하는 ‘제1차 항생제 내성 포럼’(One-health, 항생제, 내성균 3가지 분과로 운영)이 열렸습니다. 다양한 부처의 전문가의 전문적 지식에 기반을 둔 정책 제안 및 자문을 통해 항생제 내성 해결을 위해 노력하고 있습니다.


<그림2. 항생제 내성균의 감염 경로, 그림 출처 : e실버news>

현대사회에서는 반려동물, 식품대량생산, 해외여행 증가, 기후변화 등으로 각 질병에 대해 개별적 대응이 무의미하며, 사람, 동식물, 환경의 건강은 서로 상호작용하는 하나의 공동체로서 인식되고 있습니다. 이처럼 항생제 내성균은 다양한 경로에서 발생할 수 있으며, 사람, 동식물, 환경의 건강을 불가분의 관계라고 인식하고 접근해야 합니다. 이러한 접근 방법을 바로 ‘원 헬스(One-Health)’라고 합니다. 원 헬스라는 개념은 이미 OIE(국제수역사무국)에서 2000년 초반에 고안되었습니다. 이후 세계보건기구(WHO)를 비롯한 국제기구들과 각국 정부에서는 항생제 내성문제 해결을 위해 원 헬스를 채택하고 있습니다.


<그림3. 원 헬스(One-Health) 구조, 그림 출처 : UCDAVIS>

항생제 내성균에 대처하기 위해서는 일차적으로 항생제 내성현황에 대한 조사가 필요하며, 이를 기반으로 의학적 측면과 더불어 원 헬스적인 측면에서 사람, 동물, 환경의 영향력에 관해 포괄적이고 구체적인 대책마련이 필요합니다. 미국의 질병통제센터(CDC)나 영국의 보건부(Department of Health)에서는 항생제 내성현황에 대한 연구를 기반으로 포괄적인 원 헬스 측면의 정책을 내세워 항생제 내성연구에서 상당한 효과를 보고 있습니다. 또 미국, 영국뿐만 아니라 EU, 일본, 중국, 스위스 등 많은 국가와 기관들이 Global National Action Plan의 원 헬스 정책을 내놓고 국가적인 차원에서 이를 관리하고 있습니다.

우리 정부도 원 헬스 기치 아래 내성균과의 전쟁을 선포하였습니다. 지난 2016년 보건복지부가 국가 항생제 내성관리 대책(2016-2020)을 농림축산식품부, 해양수산부, 환경부 등 관계부처 합동으로 발표한 것이 그 시작이었습니다. 항생제 오남용을 줄이고 내성균 전파를 차단한다는 비전을 제시하였으며, 인체와 비인체로 구분지어 각 분야에 사용되는 항생제 사용률 감소 목표를 구체적으로 발표하였습니다. 각 부처별로 집중 관리해야 할 병원체가 나누어지기 때문에 내성균에 대한 통합적 감시를 할 수 있습니다. 이를 토대로 다양한 감염 경로를 파악하여 부처별 연계활동 및 비교·통계·분석 활동이 가능해진다면, 나아가 국가적 관리대책 수립이 가능할 것으로 보입니다.

국가 항생제 내성관리를 위해 가장 먼저 국가 항생제 내성 현황에 대한 조사체계를 마련하였습니다. 서울·부산 등 6개 권역을 대상으로 항생제 내성균 감시 결과(2016년 5월 ~ 2017년 4월)를 세계보건기구(WHO)와 공유하였습니다. 2017년부터는 Kor-GLASS 통합데이터베이스를 구축하여 8개 권역으로 확대해 수집된 모든 데이터는 운영·관리하고 있습니다. 이 시스템을 통해 수집 항생제 내성균 및 정보의 체계적인 관리가 가능하며, 내성균주 고유의 감수성, 생리학적, 유전적 특성을 보존할 수 있습니다. 또한, 수만 건에 이르는 데이터를 통해 여러 가지 통계 정보를 산출할 수 있어 항생제 내성균 정보를 제공한 수집기관의 개별 통계 자료는 물론이고 기간별, 균종별, 검체별로 내성률에 대해 의미 있는 결과를 산출·제공할 수 있습니다. Kor-GLASS 통합데이터베이스의 국가항생제 내성에 대한 내성결과는 원 헬스적인 측면에서의 대책마련에 큰 도움이 될 것으로 보입니다.


<그림4. Kor-GLASS 운영체계, 그림 출처 : 질병관리본부, 보도자료>

Kor-GLASS 통합데이터베이스는 항생제 내성 정보를 수집할 때에도 용이합니다. 전산화된 시스템을 통해 데이터 수집에 대한 비용을 크게 줄였으며, 항생제 내성 관련 정보를 표준화하여 수집 데이터의 오류를 최소화하는 이점을 가집니다. 체계적인 내성균 정보는 새로운 항생제 내성균 출현을 감시하고 확산을 억제할 수 있는 중요한 자료입니다. 수집한 항생제 내성균의 출처를 확인하여 확산 경로도 추적할 수 있기 때문입니다. 나아가 내성균 연구의 시초가 마련될 수 있습니다.

많은 전문가들이 항생제 내성 문제는 원 헬스적 접근이 필요하다고 말합니다. 원 헬스를 실현하기 위해서는 사람, 동물, 환경이 만나는 지점을 찾아야 합니다. 바로 Kor-GLASS 통합데이터베이스가 원 헬스의 교차점이자 시작인 것입니다. 항생제 내성균으로 인한 문제를 다각적으로 접근함으로써 내성균을 제어할 수 있습니다.

앞으로 Kor-GLASS를 비롯한 각 부처(보건복지부, 해양수산부, 농림축산 식품부, 환경부 등)에서 관리하는 항생제 정보 시스템은 One-Health 기치 아래 통합될 것입니다. 단순히 데이터의 통합만을 의미하는 것이 아니라 각 분야의 전문가들이 정보를 교환하고 소통하여 정책으로 연계될 수 있는 장을 말합니다. 이를 위해서는 산·학·연 전문가들이 해당 분야에서 항생제 내성 문제에 집중함과 동시에 타 분야와 커뮤니케이션을 해야 합니다. Kor-GLASS 통합데이터베이스가 그 시작점이 될 것으로 기대하고 있습니다.

2014년 영국 경도상 위원회는 인류 최대 난제로 1천만 파운드(약 172억 원, 노벨상금의 11배)의 상금을 내걸고 항생제 내성을 극복할 해결책을 찾는다고 했습니다. 경도상이란 1700년대 영국 의회가 당시 난제였던 바다에서 경도를 측정하는 법을 개발하는 데에 수여한 상입니다. 현대에는 바다에서의 경도 측정이 쉬운 만큼, 언젠가는 항생제 내성도 원 헬스와 Kor-GLASS를 통해 극복될 것입니다.

이전 시리즈 보기

참고문헌


작성자 : BS실 조일흠 개발자

Posted by 人Co

2017/12/13 16:47 2017/12/13 16:47
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/268

1. 환경을 생각하는 시대

예부터 가을은 천고마비(天高馬肥)라 하여 높고 청명한 하늘과 풍성함이 가득한 계절의 대명사였으나 요즘은 미세먼지 같은 대기오염으로 인해 기대했던 만큼 높고 맑은 하늘을 찾아보기 힘들어졌다. 과거 빈곤을 벗어나기 위해 산업화가 주된 목표였던 한국은 대기오염 같은 환경오염에 대한 문제의식도 없었고 관심도 적었던 탓에, 기껏해야 봄에만 찾아오는 중국발 황사에 잠시 괴로워만 할 뿐 우리가 신경 써야 할 문제가 아닌 이웃 나라의 문제로만 치부하곤 했었다. 그러나 이제는 계절에 상관없이 찾아오는 황사와 미세먼지 가득한 날이 연중 계속되면서 대기오염의 심각성을 나라 전체가 걱정하고, 국민의 건강과 안전을 지키기 위한 현실적인 대안이 필요하다는 목소리가 커지고 있으며 세계적으로도 변화하는 환경을 연구하고 보존하기 위한 노력에 아낌없는 투자가 필요한 시대가 되었다.


<그림1. 대기오염, 그림 출처 : 유엔환경계획 한국위원회>


2. 생물다양성과 유엔(UN)환경계획

현재 전 세계는 오존층 파괴, 기후온난화, 난개발에 의한 서식지 파괴, 남획과 천적의 영향에 따른 생물종 감소 등 생태계 파괴에 대한 지구 환경문제가 대두되면서 이런 문제 해결을 위한 방안으로 생물다양성을 보존해야 한다는 인식이 커지고 이를 위한 노력의 움직임이 진행 중이다. 이런 이유는 생물다양성이 인류와 직접적으로 관련된 식량안정과 의약품 생산, 대기와 수질 등 우리가 살고 있는 환경에 지대한 영향을 미치고 있음이 밝혀지면서 인간 이외의 다른 생명에 대한 존엄성을 인정하고 생물다양성의 유지가 절대적으로 필요하다는 의식이 커졌기 때문이다.

생물다양성이란 지구상의 생물종(species)의 다양성, 생물이 서식하는 생태계의 다양성, 생물이 지닌 유전자(gene)의 다양성을 모두 총칭하는 의미이다.

<그림2. 생물다양성, 그림 출처 : 국립생물자원관 ABSCH 유전자원정관리센터>


지난 400년간 300~350종의 척추동물과 400종의 무척추동물, 수백 종의 식물이 이미 멸종하였으며, 세계자연보전연맹(World Conservation Union: IUCN)에 따르면 향후 20년 이내에 50만 내지 100만 종 이상의 생물이 추가적으로 멸종할 것으로 예상하고 있다. 따라서 유엔 차원의 관리를 위하여 생물종의 감소문제를 비롯한 환경문제를 중점적으로 다루는 유엔환경계획(United Nations Environmental Programme, UNEP)을 설립(1972)하였으며, 1984년 및 1987년 유엔총회의 권고에 따라 세계자연보전연맹은 생물다양성에 대한 협약의 가능성을 검토하기 시작하였다.
올해 2017년도 유엔환경계획의 7대 주요 이슈는 대기오염, 미세플라스틱, 해양, 멸종 위기종, 태양에너지, 기후변화, 녹색경제와 지속가능한 금융 이며, 이중 해양과 멸종위기종 같은 생물다양성 관련키워드는 매년 이야기 되고 있는 주요한 주제이다.

3. 생물다양성협약과 나고야 의정서


종과 생태계가 직면하고 있는 위협으로부터 전 세계적인 자산인 생물다양성을 보존하고자 하는 국제적인 노력으로서 유엔환경계획(UNEP)은 1992년 6월 브라질 리우에서 열린 유엔환경개발회의(UNCED)에서 생물다양성협약(CBD:Convention on Biological Diversity)을 채택하였다. 이후 30번째 국가의 비준으로 1993년 발효되었으며, 우리나라와 EU를 포함한 총 193개국이 CBD를 현재 비준한 상태이다.

CBD의 목표는 생물다양성을 보전하고, 생물다양성의 구성요소를 지속가능하게 이용하며, 유전자원의 이용으로부터 발생하는 이익을 공정하고 공평하게 공유하는 것이다. CBD 실천전략 마련의 필요성이 강하게 제기되는 가운데, 2010년 나고야에서 열린 제10차 CBD 당사국총회에서 5개의 전략목표와 이에 따른 20개의 세부목표가 설정되었다. 특히, 유전자원 접근 및 이익공유(ABS: Access to genetic resources and Benefit-Sharing)의 구체적 이행을 위한 보충협정서가 채택되는데, 이것이 바로 나고야 의정서(Nagoya Protocol on ABS)이다.


<그림3. 유전자원의 접근 및 이익 공유 과정,
그림 출처 : 국립생물자원관 ABSCH 유전자원정관리센터>

나고야의정서의 의의는 크게 3가지로 나눈다.

첫째, 개도국과 선진국간 격차해소 
나고야의정서는 유전자원의 이용과 공정하고 공평한 이익공유라는 새로운 체제를 구체화함으로써 경제 규모•과학기술 수준 등에서 개도국과 선진국간 격차(남북갈등)를 해소하고 전세계 생물다양성 보전 및 지속가능한 이용에 이바지하게 된다.

둘째, 생물다양성보전 
나고야의정서는 생물다양성협약에서 다루는 유전자원과 유전자원의 이용으로부터 나오는 이익에 적용된다. 또한, 나고야의정서는 생물다양성협약에서 다루는 유전자원 관련 전통지식(전통적 공동체가 보유하고 있는 지식, 지역법, 관습 및 전통하에 수세기 동안 세대에서 세대로 전승되고 개발된 지식)과 전통지식의 이용으로 발생하는 이익에도 적용된다.

셋째, IPLCs 권리보호 
특히 토착지역공동체(IPLCs: Indigenous Peoples and Local Communities)가 보유하고 있는 유전자원과 관련된 전통지식에 대한 접근 등에 대하여 규정하고, 의정서 당사국이 공동체법과 공동체 절차 등을 고려하며, 이들 토착지역공동체의 사전통보승인 및 공정하고 공평한 이익공유를 보장하기 위한 조치를 취할 것을 의무화함으로써 토착지역공동체가 보유하는 전통지식의 이용으로부터 발생하는 이익, 혁신 및 관습에 대한 이들 공동체의 능력을 강화한다.


4. 생물다양성협약과 나고야의정서 그 이후...

생물다양성 협약 및 나고야 의정서 이후 현재까지 지속적인 회의를 통하여 생물다양성 보존을 위한 노력이 계속되고 있다. 연도별로 주요 동향은 하단의 표1.과 같다.


<표1. 생물다양성 협약 이후 국제동향(회의)>


5. 국제생물다양성전략

협약당사국은 생물다양성의 보전 및 지속가능한 이용을 위한 국가생물다양성전략(National Biodiversity Strategy : NBS)을 수립하도록 하고, 생물다양성의 구성요소를 확인, 감시하도록 하였다. 우리나라 또한 정부 부처 주도하의 6개 전략으로 매년 1조 이상의 예산이 투자되고 있다.

<표2. 국가생물다양성전략(대한민국)>




<그림4. 부처별 국가생물다양성전략 투자현황,
 그림 출처 : [2017년도 국가생물다양성전략 시행계획] 보고서>



6. 마치면서


생물다양성협약은 원칙적으로 현행 국제협약에 따른 각 협약 당사국의 권리 및 의무에 영향을 미치지 아니한다. 다만 권리행사 및 의무이행이 생물다양성에 심각한 피해 및 위협을 초래할 경우에는 예외적으로 협약상 효력이 다른 국제협약에 영향을 준다. 따라서 현재까지 결론 없이 계속 논의 후 보강되고 있다.
또한, 생물자원전쟁과 생명공학기술의 안전성의 공존을 가진 협약이며 두 개의 상반된 목표를 가지고 있기에 오랜 시간 동안 준비하고, 단계별로 대체 해야 하는 자세가 필요하다.
정부 부처는 유전자원에 대한 접근과 이익 공유 체제 구축목표로 유전자원 정보화, 이용 활성화를 위한 정보센터를 구축 및 운영하고 있다. ㈜인실리코젠은 정부 부처(농림부, 해수부, 산자부, 미래부 등)와 협력하여 생물다양성협약에 대한 범세계적인 환경문제를 해결하기 위하여 공동 연구를 진행하고 있다.







<그림5. 부처별 유전자원 정보화 센터와 주요 업무>



참고문헌



작성자 : 대전지사 Development팀
홍지만 선임 컨설턴트

Posted by 人Co

2017/12/01 13:49 2017/12/01 13:49
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/265

DTC (direct-to-customer) 유전자검사

유전자검사

유전자검사는 일반적으로 개인식별, 특정 질환, 또는 질환 상태의 원인을 검출하기 위해 DNA, RNA, 염색체 그리고 대사물질을 분석하는 것을 말한다. 인간 유전체 지도가 완성되어 많은 유전자에 대한 이해와 유전자-질환과의 연관성이 빠르게 규명되면서 유전자검사를 통해 진단 및 예측이 가능하게 되었다.

유전자 검사는 질병 진단, 미래 예측 그리고 유전이라는 특수하고 민감한 특성이 있기 때문에 유전자 검사 결과 오류는 매우 엄격하게 관리되어야 할 필요성이 대두되었다. 이에 따라 2005년 생명윤리 및 안전에 관한 법률을 제정하여 검사와 기관에 대한 체계적인 관리가 시작되었다.
유전자검사는 의료기관에서 의뢰한 검체를 통해 관련 유전자의 발현, 변이 등을 유전자검사기관에서 진행하게 된다. 그러나 『생명윤리 및 안전에 관한 법률 제50조제1항』에서 제한하는 내용은 검사할 수 없다. 또한, 비의료기관의 유전자검시기관은 단독으로 질환 예방, 진단 및 치료 관련 유전자검사는 시행할 수 없다. (보건복지부장관이 필요하다고 인정하는 경우는 예외)
제50조제1항: 유전자검사기관은 과학적 증명이 불확실하여 검사대상자를 오도(誤導)할 우려가 있는 신체 외관이나 성격에 관한 유전자검사 또는 그 밖에 국가위원회의 심의를 거쳐 대통령령으로 정하는 유전자검사를 하여서는 아니 된다. 


DTC 유전자검사

2015년 12월 생명윤리 및 안전에 관한 법률 제50조제3항이 개정되면서 2016년 6월 30일부터 의료기관의 의뢰 없이도 비의료기관인 유전자검사기관(업체)에서 유전자검사를 직접 실시할 수 있게 되었다(의료기관이 아닌 유전자검사기관이 직접 실시할 수 있는 유전자검사 항목에 관한 규정; 보건복지부고시 제2016-97호). 이로써 개인이 직접 본인의 유전자검사를 비의료기관의 유전가검사기관에 의뢰할 수 있게 되었으며, 이를 DTC(direct-to-customer) 유전자검사라고 한다. (국외에서는 PGS(Personal Genetic Service)라고도 한다.)
제50조제3항: 의료기관이 아닌 유전자검사기관에서는 다음 각 호를 제외한 경우에는 질병의 예방, 진단 및 치료와 관련한 유전자검사를 할 수 없다.
1. 의료기관의 의뢰를 받은 경우
2. 질병의 예방과 관련된 유전자검사로 보건복지부장관이 필요하다고 인정하는 경우
 

DTC 유전자검사는 생활습관 개선 및 질환 예방이 가능한 검사와 과학적 근거가 확보된 검사자 위해성이 적은 검사로 한정되며, 검사 가능한 유전자검사 항목은 이를 규정하는 고시에 나온 12개 검사항목, 46개 유전자이다. 그중 9~12번 유전자검사 항목은 고시 시행일로부터 2년 후 그 적정성을 평가한다.
『훈령·예규 등의 발령 및 관리에 관한 규정』(대통령훈령 제334호)에 따라 이 고시 발령 후의 법령이나 현실여건의 변화 등을 검토하여 이 고시의 폐지, 개정 등의 조치를 하여야 하는 기한은 2019년 6월 30일까지로 한다.


그림1. DTC 유전자검사 항목

법률 규제의 완화는 국내 비의료기관로부터 다양한 DTC 서비스 상품들을 개발하는 계기가 되었다. 이러한 국내 시장의 움직임은 전세계적 니즈 및 시장 방향성을 고려한다면 필연적 선택이라 할 수 있다. 2016년 크리던스리서치에 의하면 전세계 DTC 시장규모는 매년 25%가량 증가하여 2022년에는 4000억 원 이상이 될 것으로 전망했다.


(출처 : 한경헬스 2017.07)


유전자검사기관


일반 유전자검사기관과 DTC 유전자검사기관은 시설, 인력 등에서 큰 차이는 없으며, 해당 검사 범위에 따른 적절한 시설, 장비, 인력 등을 갖춰 신고하면 된다. 시설, 장비에 대한 사항은 최소한의 내용을 제외하고 법률로써 규정ㆍ제재하고 있는 부분은 없으나, 매년 현장 및 정확도 평가를 통해 기관으로써 적정한지 평가받으며, 결과는 공개된다.

등록
현재 유전자검사기관 등록은 신고제이다. 『보건복지부령 시행규칙 제46조제1항』으로 정한 시설 및 인력 등을 갖추고 검사 유전자에 대한 사업계획서를 작성하여 신고하면 된다. 신고시 유전자검사에 대한 과학적 근거를 평가받게 되며, 기존에 평가가 통과된 유전자검사가 가능한 유전자와 검사방법인 경우는 보험코드가 부여되어 있으므로 상대적으로 쉽게 신고가 가능하다. 그러나 검사 유전자가 보험코드가 없는 경우는 신의료기술로의 적정성을 인정받을 수 있는지를 먼저 확인해야 한다. DTC 유전자의 경우 보험코드가 없으므로 고시번호를 기재하여 제출하면 된다. 현재 우편으로는 신고 접수를 받지 않으며 인터넷으로만 가능하다.

유전자검사 동의서 및 검체 보관
검사자의 개인정보보호를 위하여 비의료기관의 경우에는 개인의 식별정보가 삭제된 상태의 동의서 사본을 받아 일정 기간 동안 보관해야만 한다. 개인정보는 어떠한 조합을 통해서라도 개인을 특정화할 수 없도록 해야 한다.
검체의 분실이나 뒤바뀜을 방지하기 위해 최소 2가지 이상의 확인자(검체번호, 처방번호, 작업번호 등)을 사용해야 한다.
유전자검사 동의서와 결과는 최소 10년간 보관하며, 검체는 유전자검사가 완료되는 즉시 폐기하는 것을 원칙으로 한다.


DTC 유전자검사기관 : 미국 vs 한국

한국과 미국의 DTC 유전자검사는 규제 방법에서 다르다 하겠다. 한국은 법령으로 정해진 유전자만 검사가 가능한 Positive 규제인 반면, 미국은 규제된 검사만 제외하고는 검사가 가능한 Negative 규제이다.

(가나다 순으로 배열)

미국

1. 23andMe
www.23andme.com 2006년 미국 캘리포니아 실리콘밸리에 설립된 23andMe는 의사를 거치지 않고 직접 유전자검사를 할 수 있도록 하는 DTC 서비스를 선보여 FDA의 승인을 받은 첫 번째 회사이다.

2013년까지 각종 질병 위험도 분석, 약물 민감도, 보인자 검사, 계통분석 등 250여 가지의 유전자검사를 제공했으며, 웹사이트에서 분석 키트를 검사자가 직접 구매하여 타액을 수집하여 우편으로 보내 분석을 의뢰하는 방법을 차용했다. 또한, 유전정보를 연구 목적으로 사용하도록 약 60만 명의 자발적인 정보 사용동의를 받음으로써 엄청난 양의 데이터를 축적했다. (현재 약 120만 명의 데이터) 2013년 11월 FDA가 질병, 약물 관련 분석의 정확도 및 오남용 가능성에 대한 의문을 제기함으로 인해 판매중지를 받았으나 소비자의 검사 결과 이해도를 높이는 상세 설명 등의 활동을 통해 2015년 Bloom's syndrom 검사(보인자 검사)에 대한 FDA의 승인을 받음으로 인해 최초로 DTC 허가를 받은 기업이 되었다.
2017년 4월 FDA로 파킨슨병, 알츠하이머를 포함한 총 10가지 질병에 관한 DTC(보인자 검사) 판매허가를 받았다.

2. Color Genomics
www.color.com

유전으로 발생하는 암과 고콜레스테롤증에 대한 DTC 유전자검사 서비스를 진행하고 있다. 타액을 통해 30개 유전자로 유전암을, 3개 유전자로 Familial Hypercholesterolemia를 검사하고 그 결과를 기반으로 의사가 무료 상담을 제공한다. 여성관련 질환이 중점적이다.


3. Mapmygenome India
mapmygenome.in/international
신체 능력과 체형, 피부, 헤어 등에 대한 DTC 유전자검사인 Genomepatri 서비스를 제공한다.


4. Habit 
habit.com


2016년 창립된 Habit은 혈액과 타액 샘플로 혈당, 콜레스테롤, 중성지방, 영양 관련 유전자검사를 통한 유전형 결과와 반응성에 대한 표현형 결과들을 통합 분석하고 식품-영양 DB를 기반으로 식단을 제조ㆍ배달하고 앱을 통해 행동을 코칭하는 개인 맞춤 서비스를 제공하고 있다.


국내

1.녹십자지놈
m.genedoctor.co.kr
진닥터(GeneDoctor)는 구강상피세포샘플 채취와 설문을 통해 진행되는 서비스로, 유전형질과 표현형질 정보를 통한 건강, 피부, 모방유형별 개인 맞춤 건강가이드를 제공하고 있다.

2. DNA Link
dtc.dnagps.co.kr
2016년 타액샘플을 통한 DTC 유전자검사 서비스인 백지인(White.S; 뷰티), 연지인(Pink.L; 헬스&뷰티), 홍지인(Red.O; 헬스)라는 명칭의 DNAGPS Color 시리즈를 출시했다. (현재 myDNA 시리즈(myDNA 뷰티, myDNA 헬스)로 명칭 변경)
DNA Link는 라이나 생명과의 제휴를 통해 특정 암보험 상품에 가입한 신규 고객을 대상으로 유전체분석 서비스를 제공하고 있으며, 국내 영업력 확대를 위해 판매법인 케어링크를 설립하여 DTC 유전자검사 서비스를 다각적으로 공급하고 있다.

3. 랩지노믹스 
www.withgene.co.kr
구강상피세포를 통한 DTC 유전자검사 서비스인 위드진(WithGENE) 서비스는 건강, 피부, 모발로 나눠 결과를 제공하고 있다.
2016년 전문병원을 통해 진행되는 유전형질과 표현형질 정보 통합분석을 통한 맞춤 운동법과 식습관 개선을 제안하는 제노팩 다이어트(GenoPAC Diet) 서비스(www.genopac.co.kr/web/home.php)를 출시하고, 고도화를 위해 미국 유력 웰니스 플랫폼 전문기업과 긴밀한 협력관계를 구축하고 있다.

4. 마크로젠
www.sharp3.co.kr
비만, 탈모, 피부 관련 DTC 유전자검사 서비스인 Sharp3는 타액 샘플을 통해 선택한 서비스 타입의 유전자검사를 진행하고 독자적으로 보유한 한국인 빅데이터에 기반을 둔 결과를 고객에게 제공한다.
마크로젠은 2016년 10월 LG생활건강과의 합작법인 젠스토리 설립을 공시한 후, 2017년 초 문을 열었다. 젠스토리는 피부노화, 모발 등 뷰티 분야에서 소비자들이 유전자정보를 통한 생활습관 개선ㆍ관리, 맞춤형 화장품 제공 등을 목표로 하고 있다.

5. 이원다이애그노믹스 
www.gene2.me
미국 일루미나가 주도하는 ‘GSA’ 컨소시엄에 23andMe와 같이 속해 있는 이원다이애그노믹스는 국내 최초 DTC 유전자검사 서비스인 진투미를 출시하여 온라인 및 제휴 약국에서 판매하고 있으며 국외에서도 해당 서비스를 신청할 수 있다. 2016년 제노힐, 루이앤레이와 개인 맞춤형 화장품의 개발, 제조 등을 위한 업무협약을 맺었으며, 2017년 9월 한국콜마홀딩스가 EDGC의 지분을 인수하며 본격적인 맞춤형 영양제, 화장품 등을 제공하기 위한 개발을 시작했다.

6. 제노플랜
www.genoplan.com/kr
타액 샘플을 통해 모발 관련 유전자를 제외한 10개 DTC 유전자검사의 결과를 홈페이지와 앱을 통해 제공하고 있다. Genoplan Fit이라는 다이어트 관리 서비스를 일본을 경유하여 서비스하고 있으며, 고운세상코스메틱과 협업하여 피부관리 방향 및 Dr.G 화장품을 매칭해주는 마이스킨멘토 서비스를 제공하고 있다.(www.myskinmentor.co.kr)

7. 한국유전자정보연구원
www.imoigen.com
2017년 1월 한국유전자정보센터에서 사명을 변경한 한국유전자정보연구원이 출시한 DTC 유전자검사 서비스인 아이모아젠 Health care와 Beauty Care는 DTC 검사항목을 나이, 성별 등으로 분류한 7가지의 패키지 서비스로 구강상피세포를 통해 12종의 DTC 유전자검사 결과를 제공한다.

8. 휴먼패스
www.humanpass.co.kr/new/subpage.php?p=ma3
유전자 체질 검사 서비스로 탈모 유전자 검사 ALOPEXIT, 피부 유전자 검사 AGEXIT, 체형ㆍ대사 유전자 검사 OBEXIT, 혈당 유전자 검사 DIABEXIT를 제공하고 있다.

Reference
1. 국가법련정보센터 www.law.go.kr/
2. 질병관리본부 cdc.go.kr/CDC/
3. 한국유전자검사평가원 www.kigte.org/
4. 유전자검사기관 현황분석, 2008, 서울대학교 산학협력단
5. www.yoonsupchoi.com/2017/04/10/23andme-disease-risk-fda/
6. www.kormedi.com/news/article/1219617_2892.html
7. health.hankyung.com/article/2017071943521
8. 국내 개인 의뢰 유전자 검사 동향, 2017. 김지훈
9. blog.marketresearch.com/9-leading-companies-in-direct-to-consumer-genetic-testing


작성자 : R&D센터 데이터랩
 하윤희 주임 연구원

Posted by 人Co

2017/11/17 15:34 2017/11/17 15:34
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/264

人CoDOM 이란?

人CoDOM은 (주)인실리코젠에서 운영하는 위키(Wiki) 기반의 생물정보 분야의 집단 지성 창출을 목적으로 운영되는 지식 커뮤니티입니다. 생물정보 지식의 관리와 공유를 통한 범국가적 네트워크 형성 및 공유와 협업 기반의 지식생산 문화 전파를 목표로 하고 있습니다. 人CoDOM 로고에도 이러한 의미를 담고 있습니다. (주)인실리코젠의 人Co에 'DOM'을 붙임으로써 '덤으로 주다'라는 플러스(plus)의 의미와 '지식이 모여 아치 형태의 돔을 이룬다는 의미를 담고 있습니다.

<그림1. 人CoDOM 메인 화면>

人CoDOM은 위키(Wiki) 언어를 사용함으로써 누구나 자유롭게 글을 수정하고 작성할 수 있도록 하였습니다. 위키(Wiki)란 무엇일까요? 다수가 협업을 통해 직접 내용과 구조를 수정할 수 있는 웹사이트를 말합니다. 지식경영이나 기록 등 다양한 용도로 이용되거나 공동체용 웹사이트나 조직 내 인트라넷에 이용되기도 합니다. 대표적인 위키(Wiki) 웹사이트로는 '위키피디아(wikipedia)'와 '나무위키'가 있습니다. '위키피디아(wikipedia)'는 위키를 기반으로 다수의 사람들이 협력하여 만들어 낸 다언어판 인터넷 백과사전입니다. '나무위키'는 한국어 위키로 잘 알려져 있으며, 2017년 3월 13일 기준, '나무위키'는 대한민국의 인기 웹사이트 순위 11위를 차지해 33위를 차지하는 한국어 위키백과를 크게 앞질렀으며 사용자 선호도를 반영하는 구글 검색에서도 한국어 위키백과보다 나무위키를 먼저 보여주고 있습니다. 人CoDOM은 생물정보학 지식에 특화되어 구글 검색을 통해서도 人CoDOM에 작성된 유용한 팁과 전문적인 지식을 볼 수 있으며, 2016년에는 人CoDOM에 수록된 리눅스와 바이오파이썬에 관련된 콘텐츠를 편집하여 핸디북 시리즈 1호 발간을 통해 오프라인 자료로 활용할 수 있도록 하였습니다. 또한, 이용자들에게 더 친근하게 인식되기 위해 글 작성 또는 SNS 개시 이벤트, 좋은 글 추천 등 다양한 이벤츠를 진행하고 있습니다. 50명 이상의 생물정보 전문가들이 직접 실무적인 팁을 작성하고 운영자들이 콘텐츠의 Quality를 향상하는 과정들을 거치고 있습니다. 이러한 노력이 모여 2014년 9월에 정식 오픈을 한 이후 현재는 한 달에 약 1만 명이 방문하고 있으며 총 누적 방문자 수가 120,068명으로 방문자수가 꾸준히 증가하고 있습니다. (2017년 8월 기준)

사용자 삽입 이미지
<그림2. 人CoDOM 핸디북 - 생.기.다. 편(리눅스와 바이오 파이썬)>

人CoDOM을 처음 방문해주신 분들을 위해 참고할 만한 문서들이 다양하게 준비되어 있습니다. 메인 화면의 help 페이지를 보면 동영상 가이드, 글쓰기 가이드, 글쓰기 예제, 글쓰기 지침에 대한 문서를 찾을 수 있으며 人CoDOM 사용 방법에 대해 자세하게 설명되어 있습니다. 그리고 人CoDOM의 컨텐츠는 크게 Article, Bioinformatics, DataScience, Etc 등 4가지의 카테고리로 구분됩니다.



<그림3. 人CoDOM 컨텐츠 카테고리>




人CoDOM에서 콘텐츠를 검색하는 방법

人CoDOM은 원하는 글을 검색하거나 없는 글은 직접 작성을 하실 수 있습니다. 검색하는 방법은 검색창에 원하는 단어를 입력하면 기존에 작성된 글을 보실 수 있습니다. 모든 문서는 기본적으로 CCL (저작자 표시-동일조건 변경 허락)에 따라 배포되며, 경우에 따라 특정 문서에 한해 변경이 가능합니다.


                                       <그림4. 컨텐츠 검색>

 

작성이 잘 되어 있는 글을 추천해 드립니다.



<그림5. GATK 주제로 작성된 글>


아래 이미지와 같이 人CoDOM 콘텐츠 하단에 페이스북 공유 항목이 추가되어 있으니 원하시는 분들은 공유하기를 눌러 자유롭게 SNS에 공유하실 수 있습니다.


<그림6. facebook 공유하기>




人CoDOM에 글을 작성하는 방법
 
 
人CoDOM에 글을 쓰는 것이 처음에는 조금 낯설 수 있지만 아래 설명대로 차근차근 따라해보면 쉽게 익힐 수 있습니다.


1. 人CoDOM (www.incodom.kr)에 접속하여 Google 계정으로 로그인을 합니다.  




2. 글쓰기 예제를 검색합니다.




3. 검색된 ‘글쓰기 예제’의 상단 우측의 Edit를 클릭합니다.




4. Ctrl+C를 이용하여 전체 글을 복사합니다.




5. 어떤 글을 쓸지 선정하고, 검색 창에 검색합니다.




6. 빈 페이지임을 확인하고 Edit를 클릭합니다.




7. 복사한 글을 붙여넣기 한 후, 복사된 틀을 수정하여 글을 작성합니다.




8. 상단 Structured 탭을 이용하여 작성한 글의 종류를 선택합니다.
 



9. 다시 상단의 Plain 탭으로 돌아가서 하단 Save 버튼을 누르면 글 작성이 완료됩니다.




人CoDOM은 생물정보 분야의 지식공유 공간으로써 공정이용을 원칙으로 하고 있습니다.

누구나 콘텐츠를 작성 및 수정할 수 있으며, 국내의 사용자들 간의 커뮤니케이션 장으로 활용되기를 기대합니다.



<참고 및 출처> 
- 위키백과사전 
- 人CoDOM 홈페이지 
- 나무위키 



<人CoDOM 관련 지난 포스트 보기!>



작성자 : Consulting팀 조혜영 주임

Posted by 人Co

2017/10/10 08:27 2017/10/10 08:27
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/259

지난 7월 24일~25일, 이틀에 걸쳐 KOBIC과 (주)인실리코젠이 주최하여 Metagenome에 대한 생명정보학 교육 워크숍을 진행하였다. 강의는 Metagenome의 역사와 Human Microbiome의 중요성 그리고 Metagenome 분석 전략에 대한 교육으로 이루어졌다. 강의 내용 중 Human Microbiome Project(인간 미생물 게놈 프로젝트)에 대해 집중하였고, 이에 대해 간략하게 적어본다. Human Microbiome이란 우리 몸에 존재하는 모든 미생물 게놈의 집합체를 말한다.


Human Microbiome Project의 시작 

2000년 인간 게놈 프로젝트의 초안이 발표되었다. 그 결과로 인체의 신비를 밝히고 질환의 비밀을 해결해 줄 것이라 기대했지만, 의학 발전에 기여한 수준은 높지 않았으며 지금도 인간 게놈을 보완하는 연구는 계속 이루어지고 있다. 그 뒤를 이어 2007년 제2의 게놈 프로젝트가 시작되었다. 제2의 게놈 프로젝트는 세컨드 게놈이라 말하고 있으며 우리 몸속의 90%를 차지하고 있는 미생물의 게놈을 밝히는 프로젝트이다.
우리 몸에는 인간 세포의 10배 이상 되는 미생물(고세균, 박테리아, 바이러스 등)이 함께 살고 있고 이들은 인간 게놈보다 대략 100배 많은 유전 정보를 암호화하고 있다. 눈에 보이지 않게 작지만, 그들은 인간 체중의 1~3%를 차지는 우리 몸의 일부이고 대부분의 미생물은 인간의 건강을 유지하는데 필수적이다.
Human Microbiome Project는 미생물이 인간의 건강에 영향을 미칠까? 건강한 인간과 질환이 있는 인간의 미생물은 어떠한 차이가 있을까? 여드름과 같은 피부질환은 피부에 살고 있는 미생물의 불균형 때문인가? 비만증 및 염증성 장 질환은 장내 미생물의 변화 때문인가? 알레르기나 정신질환도 미생물의 균형이 파괴되어 일어난 것인가? 라는 근본적인 질문에서 시작되었다.
최근 과학적인 연구결과로 미생물은 인간의 몸과 협력적 상호작용을 하면서 방어, 신진대사, 면역의 균형과 같은 인간의 신체 기능에 참여하여 위장 장애, 알레르기, 비만, 자가 면역질환 및 정신질환의 발생과 예방에 직접적인 영향을 미친다고 발표되고 있다.


Human Microbiome Project의 최근 동향 


(그림1. Human Microbiome Project의 국내외 동향)

2007년 미국, 유럽, 일본 등이 참여하여 International Human Microbiome Consortium (IHMC)을 조직하였다. 인간의 몸을 이루는 표면 중에서 18개 부위를 선정하여 수백 명 지원자의 미생물을 채취한 후 미생물 게놈 분석을 수행하고 있다. 이를 통해 몸속에 어떠한 미생물들이 서식하고 있는지와 미생물과 연관된 질환을 연구하고 있다. 한국은 다소 늦었지만 2011년에 가입하였다.

미국 : Human Microbiome Project (HMP)는 NIH에서 2008년부터 nasal passages(비강), oral cavity(구강), skin(피부), gastrointestinal tract(위장관) 및 urogenital tract(비뇨 생식기) 등 15개 신체 부위를 대상으로 690개의 샘플에서 미생물 군집을 연구하는 프로젝트를 수행하였다. 건강한 개인의 정상적인 미생물 조성 범위를 확인하였고 생물학적, 의학적으로 중요한 정보를 제공하고 있다.
National Microbiome Initiative (NMI)는 2016년 5월에 농작물, 소, 돼지 등에 영향을 미치는 토양 미생물을 비롯하여 감염병과 정신질환, 비만에 영향을 미치는 미생물, 우주인에게 미생물이 미치는 영향 연구에 2년간 1억 2천 100만 달러를 투입하였다.

유럽 : 염증성 장 질환과 비만을 두고 2008년부터 2012년까지 프랑스, 독일, 덴마크, 스페인, 뉴질랜드, 중국 등 유럽 8개국이 컨소시엄을 구성하여 Metagenomics of the Human Intestinal Tract (MetaHIT) 프로젝트를 진행하였고, 현재는 International Human Microbiome Consortium에 참여하고 있다

캐나다 : Canadian Institutes of Research (CIHR)는 2009년에 140억 원의 예산을 편성하여 Canada Microbiome Initiative (CMI)를 만들었다.

한국 : 2011년에 International Human Microbiome Consortium에 가입하였다. IBS 면역 미생물 공생 연구단에서 환자 맞춤형 면역 조절 미생물을 발굴하고, 이를 활용해 면역질환 치료를 하려고 한다. 아시아태평양 이론물리센터는 미생물 생태계 지도를 만들고 인체의 건강과 질환을 연구하고 있다. 또한, 미래창조과학부도 올해부터 2023년까지 총 80억 원을 투자해 한국인 장내 미생물 뱅크 구축과 활용 촉진사업을 추진하고 있다.


Human Microbiome과 질환, Microbiome 분포 

몸속에 살고 있는 미생물 개체군의 불균형이 질환을 유발할 수 있으며, 이러한 질환으로 acne(여드름), antibiotic-associated diarrhea(항생제 관련 설사), asthma(천식), allergies(알레르기), autism(자폐), autoimmune diseases(자가 면역 질환), cancer(암), dental cavities(치아 충치), depression and anxiety(우울증과 불안), diabetes(당뇨병), eczema(습진), gastric ulcers(위궤양), hardening of the arteries(동맥 경화), inflammatory bowel diseases(염증성 장 질환), malnutrition(영양실조), obesity(비만) 등과 연관이 있다는 연구 결과가 보고되고 있다.

(표1. Human microbiome과 관련된 질환)
<출처 : 2012, Nat Rev Genet. The Human Microbiome: at the interface of health and disease>

몸속의 미생물 생태계가 불균형을 이루는 이유는 항생제 남용 및 노출, 병원성 미생물 감염, 식습관 변화 같은 환경요인에 의한 선택에 의해 유도될 수 있다.


(그림2. 우리 몸에 존재하는 미생물 분포)
<출처 : 2012년 Nature, The surface brigade>
<출처 : National Institutes of Healthy, Scientific American Human Micorbiome Project>
<출처 : 2012, Nat Rev Genet.The Human Microbiome: at the interface of health and disease>

위 그림에서 보여주는 바와 같이 인간 미생물의 구성은 해부학적인 위치에 따라 다양하게 분포하고 있다. 피부를 예로 들면, National Human Genome Research Institute 책임자인 Julie Segre는 2009년 6월에 10명의 건강한 지원자를 기반으로 인체 피부 20곳에 살고 있는 미생물을 조사하였고, 건강한 피부에 존재하는 미생물의 다양성을 밝혀냈다. Oily(유분기), Moist(촉촉함) 그리고 Dry(건조)한 상태에 따른 피부 미생물 분포를 확인하였다.
배꼽, 겨드랑이, 사타구니 같이 촉촉한 표면에는 Corynebacterium(코리네박테륨)과 Staphylococcus(포도상구균)에 속한 미생물이 살고 이들은 땀 속에 있는 질소를 먹고 산다. 얼굴 및 등과 같이 피지가 많은 표면에는 Propionibacterium(프로피오니박테룸)에 속하는 미생물이 주로 사는데 이들은 땀구멍에서 배출된 지방을 먹고 산다. 팔꿈치나 팔뚝에는 훨씬 다양한 미생물이 살고 있다.
피부에 사는 미생물의 일부는 죽은 피부를 제거 위해 진화했으며, 다른 일부는 피부 세포가 생성하는 오일을 천연 모이스처라이저로 변형시키고, 일부 미생물은 해로운 박테리아와 바이러스가 침입하지 못하도록 하였다. Julie Segre는 미생물의 불균형이 건선 및 습진과 같은 피부 질환에 기여하는지 여부를 조사하기 시작했다.

대변 미생물 이식(Fecal Microbiota Transplantation) 치료 

대변은 70%가 박테리아이고 4,000종의 박테리아가 발견된다. 대변 미생물 이식은 건강한 사람의 변에서 추출한 유익한 미생물을 다른 사람의 장에 넣어주는 것으로, 수혈을 받는 것에 비유할 수 있다. 한 번의 대변 미생물 이식으로 C-diff(시디프)’ 경우는 완치율이 80%나 된다고 한다.
대변 미생물 이식의 예는 동물에서도 볼 수 있다. 침팬지 행동에 관한 연구로 유명한 Jane Goodall에 의하면 일부 야생 침팬치는 과일을 먹다 보면 설사를 하게 될 때가 있는데, 이때 다른 침팬지의 대변을 먹고 적합한 미생물을 취한 후 설사를 멈춘다고 한다.

호주 시드니 소화 질환 센터의 Tom Borody교수는 염증성 장 질환 치료의 목적으로 대변 기증자 모집 광고를 통해 대변 미생물 이식의 공여자를 모집하여 치료에 적용하기도 하였다.


(그림3. 대변 기증자 모직 광고)
<출처 :100% Human>

미국에서는 비영리 대변은행인 OpenBiom이 출범하였다. OpenBiom은 대변의 공여자 모집 => 대변 스크리닝 => 이식할 세균준비 => 샘플 배달까지 해주는 서비스를 갖추고 있다. 미국 50개 주 중 33개 주의 180개 병원이 오픈바이옴과 연계되어 있다. 50명의 공여자를 테스트하고 검증해야만 한 사람의 적합한 공여자를 만날 수 있다.
2017년 국내에서도 대변은행 골드바이옴이 운영되고 있고, 세브란스병원은 전문 대변 이식팀을 구성하였다.
대변 미생물 이식은 장질환, 비만, 장과 연계된 질환 등의 치료 목적으로 이루어질 것이고 개인 맞춤형 미생물 대변 이식으로 발전할 수도 있다.

글을 마치며 

장내에 사는 미생물, 피부에 사는 미생물, 대변 미생물의 스크리닝 등 우리 몸속에 분포하고 있는 미생물을 분석해 내기에는 너무나 방대한 양과 종류이다. 그러나 시퀀싱 및 생물정보학 기술이 계속 진화화면서 지난 10년간 많은 발전이 있었다. 공개된 분석 도구로서는 Mothur, Vegan, Qlime 등이 있다. 우리 회사의 CLC Microbial Genomics Module을 활용하여 미생물 군집의 구성 및 기능적 특성을 분석할 수도 있다. 인간 미생물은 개인, 인종간, 국가에 따라 변동 및 다양성이 존재하며 한국인 고유의 미생물 게놈 데이터베이스가 구축되어 공개될 날을 기대해 본다.

<참고 문헌 및 사이트>
1. 10% Human. (Allerna Collen, 앨러나 콜렌)
2. The surface brigade, NATURE | VOL 492 | 20/27 DECEMBER 2012
3. The Human Microbiome: at the interface of health and disease Nat Rev Genet. 2012 Mar 13; 13(4): 260–270.
4. http://learn.genetics.utah.edu/content/microbiome/disease/ 
5. http://cdc.go.kr/CDC/cms/content/mobile/61/71961_view.html 
6. http://news.donga.com/3/all/20170421/83973970/1 



작성자 : 정호진 지사장

Posted by 人Co

2017/08/18 10:21 2017/08/18 10:21
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/254

곰팡이로 친환경 대체에너지 만든다

봄, 하면 막연히 설레던 마음이 두려움으로 바뀐 것은 흩날리던 벚꽃마저 가려버린 미세먼지 때문일 것입니다. 눈을 뜸과 동시에 휴대전화로 오늘의 미세먼지 농도를 확인하고 마스크를 준비하는 일에 익숙해져 버렸습니다. 화석 연료를 대체할만한 대체 에너지원을 찾는 일을 더는 미룰 수 없게 된 현실입니다. 지난해 경주로부터 시작된 지진에 대한 공포로 원전에 대한 우려의 목소리가 커지고 있는 가운데 문재인 정부는 탈원전 정책의 하나로 지난 6월 17일에는 대한민국 1호 원전(부산 기장군 고리 원자력발전소)이 멈추었고 신고리 5·6호기의 건설1) 및 노후 석탄 화력 발전소의 가동을 일시 중단했습니다. 대신 태양광, 풍력 등 신재생에너지를 늘리겠다는 정책이 발표됨에 따라 친환경 연료인 신재생에너지 발굴에 대한 필요성이 대두하고 있습니다.2) 신재생에너지라 하면 흔히 수력, 풍력, 태양력 등을 떠올리게 되는데 생물자원(Biomass)으로부터 얻어지는 바이오에탄올도 이에 포함됩니다.

순도가 높고 기존의 화석 연료를 연소할 때 생성되는 일산화탄소 등 환경오염 물질이 전혀 배출되지 않는다는 점에서 친환경 대체에너지로 주목받고 있는 바이오에탄올은 사탕수수, 옥수수, 카사바 등 식량 자원으로부터 얻어지는 것을 일반적으로 생각하게 됩니다. 실제로 사탕수수의 원산지인 브라질에서는 차량의 70%가 사탕수수로부터 얻어진 바이오에탄올을 연료 첨가제로 사용하고 있습니다. 그러나 그 외의 지역에서는 원가가 너무 비싸 이용하기 힘들고, 옥수수의 경우 식량난과 결부되어 윤리적 문제를 일으켜 자연스럽게 2세대 바이오에탄올로의 전환이 시작되었습니다.

2세대 바이오에탄올은 볏짚, 잡초, 포플러 나무 등 목재(셀룰로오스, 헤미셀룰로오스)로부터 얻어지는데 이 경우, 목질부는 식용화되지 않고 폐목재의 처리 문제를 해결했다는 점에서 윤리적 문제는 피했으나 바이오에탄올 생산을 위한 주재료인 셀룰로오스와 헤미셀룰로오스만 분리하는 것이 어렵다는 단점이 있습니다. 목재 중량의 25~35% 정도를 차지하는 리그닌은 지용성 페놀 고분자로써 셀룰로오스와 헤미셀룰로오스를 감싸며 분해를 막고 있으므로 반드시 먼저 제거되어야 합니다. 2017년 하반기 준공 예정인 GS칼택스 바이오부탄올 데모플랜트의 부탄올 생산 공정도에도 나와 있듯이 화학처리 및 고액분리 등 전처리 과정이 반드시 필요합니다. (그림 1 참고)

<그림 1. 바이오부탄올 생산 공정도>
그림출처 : GS칼텍스, 폐목재로 바이오부탄올 생산한다…세계 첫 실증사업 시작,
<조선비즈>, 2016년 9월 29일

산림이나 목재 건축물을 분해하여 피해를 주는 목재부후균이라고 불리는 곰팡이류가 있습니다. 그들의 리그닌 처리 방법을 차용한다면 고비용의 화학처리 등의 전처리과정을 대처할 수 있지 않을까요? 부후균은 목재 주요 성분의 분해 방식에 따라 셀룰로오스와 헤미셀룰로오스를 분해하는 갈색부후균(Brown rot fungi), 셀룰로오스, 헤미셀룰로오스, 리그닌을 모두 분해하는 백색부후균(White rot fungi), 그리고 셀룰로오소를 우선 분해하고 소량의 리그닌을 분해하는 연부후균(Soft rot fungi)으로 나뉩니다. 2009년 산림과학원에서는 자생 진균류인 백색부후균의 리그닌 분해 효소 중 하나인 락카아제(laccase) 유전자를 이용한 형질전환체(GMO)를 개발하였고 4배 이상 뛰어난 효율을 보였다고 합니다.




<그림 2. 진황녹슨버짐버섯과 목재 부패 모습>
그림출처 : 위키백과

신기하게도 갈색부후균은 진화과정에서 리그닌 분해 능력을 잃었음에도 불구하고 백색부후균보다 더 빨리 나무를 분해합니다. 2012년 미에너지성공동연구소(DOE-JGI)를 포함한 세계적 연구팀이 갈색부후균 중 건부(마른부패, dry rot)를 일으키는 Serpula lacrymans(진황녹슨버짐버섯)의 유전체를 신규 해독(42.8Mb / 12,917 genes)하고 이미 밝혀져 있던 다른 부후균류, 외균근류와의 비교유전체 분석을 수행하여 갈색부후균의 리그닌 처리 기작을 밝혔습니다.


<그림 3. 비교유전체 분석 결과>
그림출처 : EASTWOOD, Daniel C., et al. 2011.

그물버섯목에 속하는 진황녹슨버짐버섯은 갈색부후균이지만 구멍장이버섯목의 Postia placenta 보다는 기주로부터 영양분을 획득하는 외균근류 중 하나인 Austropaxillus sp. (외균근)와 가장 유연관계가 가까우며 그들 간의 분화는 약 1,500만~5,300만 년 전에 이루어진 것으로 예측되었습니다(그림 3-A).

Gene expansion/loss 분석 결과 부후균류의 공통조상은 66~83개의 lignocellulose-active CAZy(carbohydrate-active enzymes) 유전자와 27~29개의 oxidoreductase를 갖고 있었던 것으로 예측되었고 진황녹슨버짐버섯에서는 각각 36개, 19개로 해당 유전자의 소실이 일부 확인되었습니다.(그림 3-B, C; branch의 숫자는 조상 개체의 copy number를, bar는 gene gain/loss range를 나타냄.) 당연하게도 리그닌 분해에 관여하는 class II peroxidases는 갈색부후균과 외균근 모두에 결여되었고 진황녹슨버짐버섯의 유전체에는 glycoside hydrolases(GH) 계열의 유전자가 많이 존재한다는 것이 밝혀졌습니다. 유전자 발현 분석으로 진황녹슨버짐버섯은 포도당(glucose)을 영양분으로 직접 획득할 때보다 소나무를 분해하여 에너지를 얻을 때 셀룰로오스, 펙틴, 헤미셀룰로오스를 분해하는 효소(GH families 5, 61, 3, 28 ; 20-fold)들과 GH5 endoglucanase, GH74 endoglucanase/xyloglucanase(100-fold) 및 oxidoreductases(4-fold) 유전자의 발현을 증가시켰음이 확인되었습니다.

논문에서는 진황녹슨버짐버섯이 목재를 분해하는 메커니즘을 아래 그림과 같이 제안하였습니다.

<그림 4. 진황녹슨버짐버섯의 목재 분해 기작>
그림출처 : EASTWOOD, Daniel C., et al. 2011.

먼저 갈색부후균은 펜톤 반응 (Fenton reaction)을 통해 강력한 활성산소인 OH 라디칼(·OH)을 생성하여 세포벽을 공격함으로써 리그닌 구조를 느슨하게 만듭니다.

Fe2+ + H2O2 + H+ → Fe3+ + ·OH + H2O  
펜톤반응 반응식

펜톤반응을 지속적으로 일으키기 위해서 glyoxal oxidase, copper radical oxidase 등 다양한 산화효소 (oxidase)의 대사작용을 일으켜 과산화수소(H2O2)를 생성하고 atromentic acid, xerocomic acid, variegatic acid 등 phenolates와 iron reductase를 이용하여 Fe3+ 이온을 Fe2+ 이온으로 환원시킵니다. 진황녹슨버짐버섯에는 Postia placenta와는 달리 특이적인 iron reductase가 있습니다. 이 효소는 CBM(Cellulose binding module)을 이용하여 이미 어느 정도 분해된 lignocellulose(셀룰로오스와 리그닌 결합체)와도 결합이 가능하므로 철 이온 환원과 그로 인한 펜톤 반응이 꾸준히 일어날 수 있도록 돕습니다. 그 결과 셀룰로오스의 노출을 증가시켰고 결론적으로 셀룰로오스 분해 효율을 높였습니다. 실제로 해당 유전자의 발현이 122-fold나 증가하였음이 실험을 통해 확인되었습니다.

그러나 OH 라디칼(·OH)은 매우 강력한 산화제이기 때문에 갈색부후균 자신과 셀룰로오스 분해 효소 역시 영향을 받을 수 있다는 점에서 의문이 남습니다. 먼저 펜톤반응은 균사가 식물 세포 내로 침투하였을 때 세포질에서 발생하는 것으로 스스로는 해를 입지 않습니다. 셀룰로오스 분해 효소의 경우 화학적으로 OH 라디칼(·OH)의 농도를 조절하여 보호한다는 설도 있었으나 최근 미국립과학원회보(PNAS)에 게재된 연구 결과에 따르면 활성산소를 필요로 하는 시기에만 단기적으로 생성하여 이용함으로써 문제를 피한다고 합니다.4)

갈색부후균은 에너지 소모가 큰 리그닌 분해 과정을 버리면서 새로운 기작(펜톤반응)을 통한 리그닌 처리 능력을 획득하거나 기생생물(외균근)로의 전환을 꾀했고, 결과적으로 펜톤반응 획득을 통해 보다 저비용으로 더 많은 에너지를 얻을 수 있게 되었습니다. 이러한 갈색부후균의 목재 분해 기작을 이용한다면 목재로부터의 바이오에탄올 생산 효율을 더욱 높이고 실용화를 앞당길 수 있을 것입니다.

끝으로 생물자원 확보의 중요성에 대해서도 생각해 볼 수 있습니다. 나고야의정서 발효에 따른 생물자원 전쟁 시대가 열린 지금, 전혀 생각지도 못했던 바이오에탄올 생산에 곰팡이가 이용될 수 있듯이 잠재적 가치가 무궁무진한 다양한 자생종에 대한 유전체 분석을 통하여 유용 생물자원을 선점하여야 할 것입니다.


Reference
1) 오늘 0시 '대한민국 1호 원전'이 멈췄다, <조건일보>, 2017년 6월 19일, 경제 B2 면
2) 문재인발 미세먼지 정책…‘신재생에너지 전환’ 시동걸까, <한겨레>, 2017년 5월 16일
3) EASTWOOD, Daniel C., et al. The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science, 2011, 333.6043: 762-765.
4) ZHANG, Jiwei, et al. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proceedings of the National Academy of Sciences, 2016, 201608454.


작성자 : R&D센터 BI그룹 정명희 주임연구원

Posted by 人Co

2017/07/07 15:22 2017/07/07 15:22
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/251

암을 유발하는 유전변이 가운데 가장 중요한 것이 복제수변이(Copy-number variation, CNV)입니다. 암 복제수변이는 체세포(somatic) 유전변이이기 때문에 생식세포 복제수변이(germline CNV)와 구분하여 CNA(Copy-number alteration)라고도 합니다. 유전체의 특정 유전자 영역이 증폭(amplification)되거나, 삭제(deletion)됨으로써, 온코진(oncogene) 강화 혹은 종양억제유전자 약화 역할을 수행합니다. 치환변이(SNV)도 중요하지만, 그 종류가 너무 다양하기 때문에 치료 표적으로 삼기가 복잡하지만, CNA는 해당 유전자를 직접 억제하거나 보완하도록 치료표적으로 할 수 있기 때문에 임상에서 더욱 중요합니다.

특정 암 조직에 대해 유전체 복제수변이 CNA가 있는지 확인하는 다양한 방법이 있습니다. 고전적인 FISH 등 염색 후 현미경으로 관찰 방법에서, 고밀도 SNP array의 방법으로 발전해 왔고, 특히 SNP6라고 알려진 Affymetrix의 칩은 SNV과 함께 CNA를 탐지하는데 널리 사용되고 있습니다. 최근 NGS 실험방법의 발전으로, WGS, WES 데이터로 매핑정도(mapping depth)를 이용하여 CNA를 추정할 수 있는데, 이는 정밀의료시대를 위해 중요한 분석 방법으로 주목 받고 있습니다. NGS 데이터로 SNV와 CNA를 함께 탐지하고, 유전변이에 맞는 치료를 수행할 수 있기 때문입니다.


(그림 1. VarScan2 프로그램이 WES 데이터로 mapping depth를 기반으로 CNA 추정하는 과정 - 염색체의 특정 영역이 삭제되거나 증폭됨을 알 수 있습니다. 출처: Exome-based Copy Number Analysis with VarScan2)

다양한 프로그램들이 NGS 데이터로부터 CNA를 탐지할 수 있습니다. 보통은 BAM 파일을 읽어 유전체의 어느 영역이 CNA인지 추정합니다. 다양한 알고리즘들이 사용되지만, 각각의 특징들로 인해 그 정확성은 다양합니다. NGS 기반 정밀의료를 위해서는 어떤 방법이 정확하게 NGS 데이터로 CNA 추정할 수 있는지 확인하는 것이 중요합니다.

한양의대 공구 교수님 지도로 TCGA 유방암 WES 데이터로 7종의 WES CNA 탐지도구의 정확도를 평가한 연구 결과가 Oncotarget에 실렸습니다. (Gene-based comparative analysis of tools for estimating copy number alterations using whole-exome sequencing data Oncotarget 2017)

TCGA는 암 환자의 WES 데이터 뿐 아니라, SNP6로 실험한 CNA 데이터를 함께 제공합니다. 이번 연구는 TCGA에서 제공되는 SNP6 CNA 데이터를 정답으로 하여, 다양한 WES 기반 CNA 탐지 프로그램(CoNIFER, CODEX, ngCGH, ExomeCNV, VarScan2, saasCNV, falcon)의 정확도를 확인하였습니다.


(그림 2. 본 연구방법의 전체 모식도 - TCGA 유방암 419 사례의 WES CNA 추정결과와 SNP6 CNA 결과를 비교함)

TCGA 유방암 419 사례에서 각각 민감도(sensitivity)와 특이도(specificity)를 확인한 결과는 다음과 같습니다.

(그림 3. 7개 CNA 추정 프로그램의 민감도, 특이도 막대그래프. CNA Gain과 Loss로 나누어 각각 확인함)

하나의 사례를 골라서 프로그램마다 얼마나 결과가 유사한지 확인한 결과는 다음과 같습니다.



(그림 4. 하나의 사례에서 CNA Gain/Loss를 정답인 SNP6 결과와 비교하고, 그 결과를 벤 다이어그램으로 표시)

전반적으로 암-정상 사례로 분석하는 도구(ExomeCNV 등)가 암 사례만 분석하는 도구(CoNIFER 등)에 비해 정확도가 높았습니다. 본 연구를 통해 CNA를 정확하게 추정하기 위해서는 정상조직도 함께 NGS 분석해야 함을 확인할 수 있었습니다. 종합적으로 saasCNV 프로그램이 가장 정확도가 높았습니다. 이 프로그램은 복제수를 대립유전자별로 확인(allele specific CNV caiing)할 수 있는 장점도 있어서 앞으로 NGS 데이터로 CNA를 추정하는데 중요하게 활용될 수 있을 것으로 기대합니다. 또한, 어떤 사례는 정확도가 높고, 어떤 사례는 정확도가 낮은데, 샘플 데이터의 어떤 요인이 정확도에 영향을 미치는지도 추가로 연구하여, 정밀의료 진단을 위한 분석 방법으로 활용 할 수 있습니다.

본 연구를 수행하는데 가장 많은 도움을 준 것은 Jupyter와 pandas입니다. "419사례 x 2만여 유전자" 행렬을 다양하게 다뤄야 하는데, pandas로 어렵지 않게 할 수 있었고, 중간중간 분석 결과들을 jupyter로 관리할 수 있었습니다. 이들 도구를 잘 사용하는 것은 유사한 분석을 수행하는데 필수 불가결한 요소가 될 것입니다.

작성자 : Platform Lab 수석개발자 김형용

Posted by 人Co

2017/05/30 08:44 2017/05/30 08:44
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/246

항생제 내성 정의 

항생제 내성(Antibiotic Resistance)은 미생물이 항생제에 노출되어도 생존할 수 있는 약제 내성을 말한다. 유전자는 접합, 형질 도입, 형질 전환 등에 의해 세균 사이에서 수평적으로 옮겨질 수 있다. 따라서 자연 선택으로 진화된 항생제 저항성 유전자가 공유될 수 있다. 항생제 노출과 같은 점진적인 스트레스는 항생제 내성을 갖는 형질을 선택하며 많은 항생제 저항성 유전자는 플라스미드에 위치하여 이들의 전달을 용이하게 한다. 세균이 다수의 저항성 유전자를 갖고 있는 경우 다제내성이라 하며, 비공식적으로 '슈퍼 박테리아'로 부른다. 이러한 항생제 내성의 주요 원인은 세균의 유전적 변이이다. 항생제 저항성 세균이 퍼지게 된 것은 의학과 수의학에서 항생물질을 사용한 결과이다. 항생제의 필요와는 상관없이 노출되는 시간이 많을수록 내성이 발전할 위험이 커진다. 내성이 흔해지면서 대안 치료의 필요성이 커지고 있다.

항생제 내성의 위험성 

감염병 치료의 필수 의약품인 항생제에 대한 내성균 발생 및 유행은 치료법이 없는 신종감염병 이상의 파급력을 가지며 사망률 증가, 치료 기간 연장, 의료비용 상승 등 공중보건에 큰 위협이 되면서 동시에 사회적 경제적 손실 초래할 수 있다. 또한, 항생제 내성에 대처하지 못할 경우, 사용 가능한 항생제가 없어져서 항생제 도입 이전 시대로 돌아갈 수 있다. 따라서 항생제 내성에 대한 심각성을 올바르게 인식하고 체계적이 대책을 마련하여 실행하는 것이 무엇보다 중요하다.

항생제 사용 현황 

국내 인체 항생제 사용량은 국제 평균보다 높고, 특히 감기 환자에서 불필요한 항생제 처방이 높다. 2014년 기준 국내 인체 항생제 사용량(DDD*/1,000명/일)은 31.7로 유사한 OECD 12개국 평균 23.7에 비해 매우 높다.


  • (출처) 국가 항생제 내성 관리대책
  • DDD (Defined Daily Dose) : 의약품 규정 1일 사용량
    → (예) 31.7(DDD/1,000명/일) : 하루 동안 1,000명 중 31.7명이 항생제를 처방받고 있음.
  • 산출기준 : 병·의원(입원, 외래) 급여 및 비급여 처방 + 일반의약품 판매

비인체 항생제 사용량은 축수산용 배합사료 첨가 금지(2011년 전면금지)로 감소하였지만, 일부 주요 항생제 판매는 증가하고 있다. 항생제 사용량은 2015년 기준으로 2007년보다 40% 감소하였다. 특히 2013년 도입된 수의사처방제 도입 이후 수의사 처방 대상 항생제 사용량은 2012년 386톤에서 2015년 352톤으로 줄어들었다. 그러나 WHO 지정 최우선 관리 항생제인 3·4세대 세파계 항생제의 경우 6.8톤에서 9.3톤, 플로르퀴놀론계 항생제는 41톤에서 40톤, 마크로라이드계 항생제는 56톤에서 66톤으로 증가하고 있다.

국내 항생제 내성률은 중환자가 많은 종합병원 외 의원, 요양병원에서도 내성률이 증가하고 있으며 축수산물 항생제 내성률이 특히 높다. 대표적 내성균인 반코마이신 내성 장알균(E.faecium)이 36.5% 수준으로 선진국(영국 21.3%, 독일 9.1%, 프랑스 0.5%)보다 월등히 높다. 또한, 내성균 환자들이 종합병원에서 요양병원이나 지역사회로 이동하면서 내성균 확산 양상이며 특히 의원 및 요양병원에서 내성률이 급증하고 있다.

  • 산출방법 : (반코마이신 내성 장알균 분리건수 / 장알균 분리건수) x 100 (출처 : 한국-2014 국가항균제내성정보 연보, 유럽 국가)
  • (출처) 국가 항생제 내성 관리대책


항생제 내성 감시를 위한 노력 - GLASS

GLASS(Global Antimicrobial Resistance Surveillance System)는 2015년 5월, 제68차 세계보건총회에서 항생제 내성이 인류 보건에 심각한 위협이라는 세계적 여론에 따라 항생제 내성 글로벌 행동계획*(Global Action Plan on Antimicrobial Resistance) 채택하였으며 이러한 글로벌 행동 계획을 지원하기 위해 개발된 항생제 내성 감시 시스템이다.

  • GLASS 목표는 크게 5가지로
    • 국가 감시 시스템과 조화된 글로벌 표준 개발
    • 선택된 지표를 통해 전 세계적으로 AMR의 범위와 부담 추정
    • AMR 자료를 정기적으로 분석하여 보고
    • 새로운 내성 출현과 국제적 확산 감지
    • AMR 예방 및 제어 가능한 프로그램 구현
  • GLASS 수집정보
    • GLASS는 국가별 데이터를 수집하기 위해 RIS 파일과 Sample 파일을 업로드 하게 되어있다. 업로드 후 각 데이터에 대한 정합성 등을 검증하고 검증을 통과하고 나면 report 형태의 다양한 통계데이터를 제공한다.


그림1. GLASS RIS 파일 (출처 :GLASS Guide to preparing aggregated antimicrobial resistance data files)



그림2. GLASS Sample 파일 (출처 : GLASS Guide to preparing aggregated antimicrobial resistance data files)


GLASS에서는 데이터 수집을 위해 국가, 병원체, 항생제 등에 코드를 부여하여 입력하도록 하고 있다.


그림3. GLASS 병원체코드 (출처 : GLASS Guide to preparing aggregated antimicrobial resistance data files)


GLASS 감시 우선순위 검체와 병원체



항생제 내성 감시를 위한 노력 - 국내

우리나라는 2016년 4월 일본에서 개최된 ‘항생제 내성 아시아 보건장관회의’에 참석 후 항생제 내성 관리대책 일환으로 GLASS 가입 의사를 표명하였고, 이후 질병관리본부에서 WHO와 실무 협의를 거쳐 2016년 7월에 가입을 완료하였다. 질병관리본부는 GLASS 감시체계의 국제 표준 자료를 산출하기 위하여 6개 권역의 종합병원을 항생제 내성 감시기관으로 지정하여 임상진료 환자에서 분리된 균주의 항생제 감수성 검사와 항생제 내성 유전자 특성 조사 등 병원체 감시를 수행 중이며 감시결과는 2017년 5월 WHO GLASS 및 국내 관련 웹사이트를 통해 공개할 예정이다.

이를 위해 질병관리본부 약제내성과에서는 Kor-GLASS 통합데이터베이스 구축사업을 진행하고 있다. 내성균은 사람 외에 농축수산, 식품, 환경 등 생태계 내 다양한 경로를 통해 발생·전파 가능하므로 범부처의 포괄적 관리가 필요하기 때문에 우리 ㈜인실리코젠은 사람, 동식물, 환경의 건강이 불가분의 관계라는 ‘One Health’ 기치 아래 항생제 내성 해결을 위해 공동 노력 중이다.


참고문헌

  1. 2016년 8월3일 보도자료 '국제 항생제 내성 감시체계(GLASS)' 가입하여 항생제 내성 관리 강화'
  2. 국가 항생제 내성 관리대책
  3. GLASS Guide to preparing aggregated antimicrobial resistance data files
  4. 위키피디아




작성자 : BS실 이기용 실장

Posted by 人Co

2017/05/08 08:12 2017/05/08 08:12
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/242

현재 우리 주위에는 수많은 질병이 발생하고 있으며, 박테리아에 의한 질병도 헤아릴 수 없을 정도로 많다. 콜레라, 흑사병, 폐결핵, 폐렴, 장티푸스, 탄저병, 나병, 각종 염증 등의 무수한 질병이 모두 박테리아에 기인하며 인류의 탄생부터 끊임없이 인간을 괴롭혀 그동안 수많은 생명을 앗아갔다.

1928년 알렉산더 플레밍에 의해 최초의 항생제 페니실린(Penicillin)이 발견되면서 1960년대까지 항생제의 개발이 활발했지만, 새로운 계열의 항생제 부재와 기술의 한계, 그리고 빠르게 증가하는 각종 세균의 내성문제 등으로 이후 항생제 개발은 감소하기 시작했다. 그러나 2000년 이후 바이오 기술의 발달과 적절한 치료제의 부재로 개발이 다시 활기를 띠기 시작하면서 2014년부터 미 FDA 승인 항생제 신약 수가 빠르게 증가하고 있다.


그림1. 실험에 몰두 중인 플레밍 (출처 : Wikipedia)

 

그림2. 플레밍은 포도상구균을 기르던 배지(왼쪽), 푸른곰팡이(오른쪽)에서 나온 물질이
포도상구균을 죽였다고 추정 (출처 : 네이버캐스트)

 

하지만 한때 항생제에 의해 치료가 가능했던 질병들이 이제는 하나 이상의 항생제에 대해 내성을 보유하고 있고, 새롭게 출시된 마지막 수단의 항생제는 값이 비싸서 치료제를 필요로 하는 사람들에게는 정작 손이 닿지 않는 문제가 발생하고 있다. 이로 인해 치료가 어려워지고 환자의 사망률이 높아지면서, 개인과 사회적으로 모두 비용이 증가하고 있다.

항생제 내성의 원인은 직접 항생제를 사용한 결과이다. 항생제 사용량이 많아질수록 항생제 내성균이 만연할 가능성은 더욱 커진다. 특정 항생제에 대한 내성은 지역별, 나라별로 다르지만, 특히 저개발국가에서 감염성 질환에 대한 항생제 남용이 항생제 내성의 주요 원인으로 작용한다.

전 세계적으로 항생제 소비를 늘리는 두 가지 요인은 개인별 소득 증대와 동물성 단백질에 대한 수요의 증가이다. 소득 증대는 항생제에 대한 접근성을 올려 개인의 삶을 연장시키는 효과가 있지만, 또한 다량의 항생제 사용으로 내성을 일으킨다. 동물성 단백질에 대한 수요증가는 가축생산의 확대를 야기하는데, 이는 농축산 분야에서 항생제의 사용을 더욱 증가시키고 결국은 항생제 내성을 이끌게 된다.

항생제를 자주 사용하다 보면 항생제에 내성을 가진 세균들이 살아남거나, 돌연변이를 통해 항생제에 대한 저항성을 가지게 된 균주들이 생겨난다. 따라서 점점 더 항생제에 내성력이 강해진 병원균들이 생겨나며 이 때문에 치료를 위하여 더 강력한 항생제를 사용하게 되는데, 그러다가 결국 어떤 강력한 항생제에도 저항할 수 있는 박테리아가 생겨나기도 한다. 이를 슈퍼박테리아(Super bacteria)라고 한다.



그림3. 황색포도상구균의 SEM 현미경 사진 (출처 : 위키백과)

현재까지 개발된 항생제 가운데 가장 강력한 항생제는 반코마이신(Vancomycin)으로, 1950 년대 이후 황색 포도상구균의 중증 감염증을 치료하는 데 사용해 왔다. 그러나 이 또한 1996년 강한 내성을 보이는 VRSA(Vancomycin-resistant Staphylococcus aureus)가 발견되었다. VRSA는 면역력이 약해진 인체에 들어올 경우 온갖 감염을 심화시키며, 어떤 항생제도 듣지 않아 결국 패혈증을 유발시켜 생명을 위협하는 초강력 세균이다. 현재 MRSA(Methicillin-resistant Staphylococcus aureus), VRSA 외에 인류를 위협하는 슈퍼박테리아는 CRE(Carbapenem-resistant Enterobacteriaceae), ESBL(Extended-Spectrum Beta-Lactamase), CDIFF(Clostridium difficile) 등 수십 종이 있다.

2016년 7월 데이비드 캐머런 영국 총리가 경제학자이자 골드만삭스 자산관리부문 회장을 지낸 짐 오닐 재무차관과 연구기관 웰컴트러스트(Wellcome Trust)에 슈퍼박테리아에 관한 연구를 의뢰해 나온 결과로 2050년이 되면 3초마다 1명이 슈퍼박테리아로 목숨을 잃을 수 있다는 경고가 나왔다. 현재 전 세계에서 슈퍼박테리아 감염으로 사망하는 사람은 연간 70만 명 정도다. 하지만 2050년에는 연간 820만 명인 암 사망자를 추월해 인류에게 가장 큰 위협이 될 것으로 보인다. 최근 영국에서 발표한 항생제 내성(AMR·Antimicrobial Resistance)에 관한 연구 보고서를 보면 2050년 기존 항생제로 치료할 수 없는 “슈퍼박테리아” 때문에 전 세계에서 1,000만 명이 사망할 것으로 예측됐다. 또한, 덴마크와 미국 공동 연구진은 덴마크에서 발견된 MRSA 중 한 종류의 오염원을 추적한 결과 항생제가 듣지 않는 메티실린 내성 황색포도상구균(MRSA) 등의 '슈퍼박테리아'가 가축 식육으로도 감염될 수 있다는 연구결과를 발표했다.



그림4. 사망 원인으로 본 세계의 연평균 사망자 수 (출처 : 경향신문)

 

항생제를 사용함으로써, 생명을 구하지만 그만큼 부작용도 크다. 미국에서만 매해 200만 명 이상이 슈퍼버그에 감염되고 그중 2만 3,000명이 사망한다. 보건복지부 발표에 따르면 한국은 경제협력개발기구(OECD) 회원국 가운데 항생제 사용량에서 이탈리아와 공동으로 1위를 차지했으며, 2015년 기준으로 항생제를 처방받는 사람 수가 하루 1,000명당 31.5명이었으며, 그중 0∼6세 영유아가 47.9%로 처방을 가장 많이 받는 것으로 나타났다.

이에 따라 국내에서도 항생제 개발과 더불어 항생제 사용에 관한 기준점을 설정하여 항생제 내성을 줄이는 방안 마련에도 힘을 쏟고 있다.

한국생명공학연구원 류충민 박사(슈퍼박테리아연구센터장)팀이 항생제인 폴리믹신에 항암제 네트롭신을 소량 첨가하면 슈퍼박테리아를 효과적으로 없앨 수 있다는 연구결과를 발표하였으며, 국립낙동강생물자원관 연구진은 낙동강에서 담수 시료를 채수해 항생제 내성균에 항균 효능을 가진 파우시박터(Paucibacter) CR182 균주를 분리하는 데 성공하여 학계에 큰 관심을 끌고 있다. 또한, 질병관리본부에서는 2016년 7월 세계보건기구가 추진 중인 국제 항생제 내성 감시체계(Global Antimicrobial Resistance Surveillance System)에 가입하여 국내 항생제 내성균 현황을 외국과 비교할 수 있음은 물론, 국내 항생제 내성 실태를 정확히 파악하여 항생제 내성 관리 및 대책 마련을 위한 중요한 근거자료로 활용 수 있을 것이라고 밝혔다.

  • 국제 항생제 내성 감시체계(GLASS) : 전 세계적으로 항생제 내성 부담을 측정하고, 새로운 내성균 출현과 확산을 감시하고, 예방 및 제어 프로그램을 마련하기 위해 도입된 국제 감시체계로 국제 표준방법으로 주요 병원체 및 항생제에 대한 내성 정보를 수집, 분석, 공유함.

이는 항생제 내성으로 인한 슈퍼박테리아 문제가 일부 국가에 국한된 문제가 아니라 전 세계가 항생제 사용 줄이기에 더욱 큰 관심을 기울여야 한다는 것을 말해주고 있다. 하루빨리 슈퍼박테리아에 효과적인 항생제가 개발되어 이 끝나지 않는 싸움이 종식되기를 기대해본다.

참고문헌

  • 중앙일보, 미생물의 역습
  • 동아닷컴, 슈퍼버그를 우주에 보낸 이유
  • 연합뉴스, 슈퍼박테리아 퇴치법 발견…항암제 섞으면 항생제 효과↑
  • 연합뉴스, "항생제 듣지 않는 '슈퍼박테리아' 육류 섭취로도 감염"
  • 시빅뉴스, 내성 강한 '슈퍼 박테리아' 억제 ‘신종 미생물’ 낙동강서 발견
  • 경향신문, “2050년, 항생제 내성 ‘슈퍼박테리아’로 3초에 1명 죽을 수도”
  • SK증권, 빅파마가 다시 뛰어드는 항생제 시장
  • 질병관리본부, '국제 항생제 내성 감시체계 (GLASS)' 가입하여 항생제 내성 관리 강화

 

작성자 : BS실 이제홍 주임 컨설턴트

Posted by 人Co

2017/03/22 14:44 2017/03/22 14:44
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/240

식품 빅데이터, 그 의미와 가치

식품 빅데이터, 그 의미와 가치
우리 생활 모든 정보가 빅데이터이다

최근 온라인 뉴스 기사에 하루도 빠지지 않고 등장하는 용어가 빅데이터이다. 선뜻 보면 빅데이터가 최근에 떠오른 핫한 용어라 생각할 수 있지만 사실 오래전부터 우리는 이미 빅데이터를 생산하고 있었지만, 그것이 보이지 않아 빅데이터라 부르지 않았을 뿐이다. 생활 빅데이터를 예로 들어보자. 우리는 삼시 세끼 밥을 먹고 잠을 자고 운동도 하고 아프면 병원을 가는 이런 일상들을 반복하면서 라이프로그 정보들을 생산하고 있다. 하지만 생산한다고 해서 데이터가 되는 것이 아니고 그걸 기록하고 축적이 되었을 때 비로소 빅데이터라고 말할 수 있다. 다양한 센서기술들이 탑재된 휴대전화기는 우리 생활 데이터들을 빅데이터 화 시키는 일을 가능케 하고 있으며, 이렇게 축적된 빅데이터를 활용한 산업들이 계속해서 진화하고 있다. 이번 포스팅에서는 수많은 생활 데이터 중에서 먹고 사는 것에 관한 식품 빅데이터에 대해 적어보고자 한다.

식품은 어떤 정보와 가치를 가지고 있나?
식품의 맛 정보

기본적으로 우리가 식품정보라 하면 맛과 영양성분 정보들을 들 수 있다. 맛은 굉장히 주관적인 정보이지만 우리가 맛집을 검색할 때 특정 음식점의 음식 맛을 평가한 블로그 정보들을 보고 찾아가는 경우가 많다. 필자도 맛집 탐방을 취미로 하고 있어서 각종 포털의 블로그 정보들을 활용하고 있다. 이렇다 보니, 많은 음식점에서 블로그 마케팅을 내세워 판매수익을 올리기도 한다. 2013년 외식 트렌드 조사에 따르면, 소비자의 대다수(84.2%)는 모바일기기가 보편화된 후로 외식 생활이 변화했다고 생각하고 있는 것으로 나타났다. 응답자의 53.5%는 모바일 기기를 이용하여 방문할 음식점의 맛 정보들을 수집하여 방문하는 것으로 조사되었다(그림1). 외식문화가 변화하면서 스타트업과 대기업을 막론하고 다양한 기업들이 맛집 앱 시장에 문을 두드리고 있다. 대표적인 애플리케이션으로는 포잉, 다이닝코드, 식신, 망고플레이트들이 있으며 누적 다운로드 10만 이상을 기록하는 성과를 거두고 있다. 이처럼 식품의 맛 정보는 주관적인 정보임에도 불구하고 외식 산업적으로 활용가치가 높은 정보라 할 수 있다.

그림1. 식품의 맛 정보, 변화하고 있는 외식 트렌드
(출처 : 한국농수산식품유통공사, 외식 트렌드 조사, 2013)


식품의 영양성분 및 생리활성 정보

식품의 영양성분 정보에 대해 크게 관심이 있는 일반인들은 드물다. 고작 식품에 강조표시되어 있는 sugar free와 low fat 등의 정보만 가지고 본인의 기호에 맞게 구매하는 정도일 것이다. 하지만 식품을 구성하는 영양성분 정보야말로 건강한 삶을 추구하는 인간에게 근본적인 답을 줄 수 있는 정보이고, 구매자는 식품 영양성분 정보에 대해 알 권리가 있다. 모든 식품에 대해 영양성분을 표시할 필요는 없으나 식약처에서는 식품 영양성분 표시에 대한 기준을 제시하고 식품위생법 시행규칙 제6조 제1항에 따라 영양성분을 표시해야 하는 식품의 종류를 정해놓고 있다. 표시 대상 성분은 열량, 탄수화물, 단백질, 지방, 콜레스테롤, 나트륨, 그 밖에 강조표시를 하고자 하는 영양성분으로 크게 7가지를 표시하도록 되어있다.


그림2. 식품 영양성분 예시(출처 : 서울특별시 어린이 식품안전)

국내외적으로 식품의 영양성분 정보는 정부의 식품 데이터베이스에서 제공받을 수 있다. 우리나라의 경우는 식약처에서 구축한 FANTASY DB(http://www.foodsafetykorea.go.kr)에서 확인할 수 있다. 식품별 영양성분 함량과 영양학적 조언 등의 정보들을 포함하고 있으며(그림3), 현재 약 13,713건의 정보가 등록되어 있는 것으로 확인된다.
미국은 USDA DB(https://ndb.nal.usda.gov/ndb)를 만들어 농업과 식품에 대한 정보들을 제공하고 있으며, 유럽의 경우도 EUROFIR DB(http://www.eurofir.org)를 구축하여 유럽 27개국의 식품정보들을 확인할 수 있는 플랫폼을 제공하고 있다. 국가 차원에서 이러한 식품 데이터베이스를 구축하는 이유는 여러 산업과의 연계뿐만 아니라, 신규 사업을 융성하기 위한 취지로 식품정보들을 제공하고 있다. 실제, 미국 기업 중 일부는 USDA DB를 활용하여 헬스케어, 다어어트, 질환 개선을 위한 다양한 애플리케이션을 개발하고 되고 있으며, 대표적으로 HealthWatch 360, CaloryGuard Pro, Nutrition complete 등이 있다.


그림3. 국내 식품 데이터베이스 (http://www.foodsafetykorea.go.kr)

영양성분 정보가 중요한 이유 중 하나는 대사체 정보를 중심으로 생리활성 정보들과의 연결이 가능하다는 점이다. 예를 들어, 우리나라 전통식품인 김치에 vitamin, carotene, ascorbic acid 등과 같은 성분들이 함유돼 있다고 했을 때, 이러한 정보들을 텍스트마이닝 기법을 활용하여 논문의 생리활성 효능 정보들과 연결하게 되면, 체내에서 식품이 특정 질병에 얼마나 효과적인지를 판단할 수 있는 정보가 될 수 있다(그림4). 이러한 정보들은 건강 기능성 식품 개발에 있어, 건강증진에 도움이 될 수 있는 물질을 효율적으로 탐색하고 선별하는데 활용될 수 있다. 또한, 자신의 질환 감수성에 따라 선별적으로 식품을 섭취할 수 있는 과학적 근거자료를 제시할 수 있다는 점에서 푸드케어 서비스 산업과의 연계가 가능하다.


그림4. 텍스트 마이닝 기법을 이용한 김치의 생리활성 정보 수집예시 (출처:직접 작성)


식품 영양유전체 정보
 
많은 연구자들이 식품의 영양성분과 유전자 간의 상호작용에 대하여 관심을 두기 시작했다. 과거의 식품 영양학은 각종 영양소의 구조 및 기능을 밝히는데 초점을 맞췄다면 영양 유전체학은 개인의 유전적 특성과 상관관계가 높은 식품을 권장할 수 있는 개인별 맞춤영양학 시대로 접어들고 있다. 이러한 배경에는 사람들이 가진 유전자의 다양성에 따라 영양소 대사가 개개인의 유전적 차이에 따라 다르게 나타난다는 것이 밝혀지고 있다. Cell지에 게재된 한 논문에서는 18~70세 800명을 대상으로 같은 음식 섭취를 하게 하고 혈액 내에 glucose양을 측정한 결과에서 개인별로 glucose를 흡수하는 정도가 다르게 나타나는 것을 보고한 바 있다(그림5). 이러한 결과들은 개개인의 타고난 유전적/표현형적 특성에 따라 식품이 대사되는 정도가 다르게 나타나는 예시라 하겠다.


그림5. 개개인의 특성에 따른 glucose 흡수량 변화 연구 결과
(출처 : Cell, Personalized Nutrition by Prediction of Glycemic Responses 2015)

식품 영양 유전체 정보는 앞으로 유전자와 표현형 그리고 영양성분과의 상관관계가 더욱 과학적으로 규명됨으로써 양질의 정보가 될 것으로 예측하고 있다. 이처럼 축적된 정보들은 건강유지와 질병 예방을 향상할 수 있는 맞춤 의료와 식품 산업을 계속해서 가속하고 있다. 최근 habit이라는 회사는 개인 유전자 검사를 통해 자신에 맞는 식품들을 컨설팅 및 판매하는 서비스를 런칭하였으며 점차 개인 유전자 맞춤화 식품정보를 활용한 헬스케어 서비스들이 증가할 것으로 예측된다.

그림6. 식품 영양 유전체 정보와 맞춤 식품
(출처: R&D 동향, '영양 유전체학의 이해 및 연구동향' 재구성)

영양 유전체 정보를 바탕으로 맞춤형 식품 정보를 제공한 국내 사례로는 한국식품연구원과 (주)인실리코젠에서 개발한 비만 인실리코푸드시스템(http://insilicofood.co.kr)을 들 수 있다. 비만 인실리코푸드 시스템은 개인의 표현형 정보(키, 몸무게, 허리둘레, 신체활동, 컨디션등)와 유전자형 정보를 기반으로 맞춤 식품 정보를 제공하는 시스템이다. 특징적인 부분은 목표 몸무게를 설정하면 현재 표현형 정보를 기반으로 이를 달성하기 위한 식단 구성이 가능하다는 점과 개인 유전자형 정보를 입력하면 유전적으로 비만에 얼마나 위험한지 확인하고 유전자형 정보에 맞는 식품 정보를 제공한다는 점이다. 또한, 한국식품연구원 오믹스 연구결과와 식품 정보를 연결시켜 제공해주기 때문에, 과학적 근거기반의 개인 맞춤 식품 정보 시스템 구축 사례라 하겠다.



그림7. 개인 유전체 정보기반 맞춤 식품 제공 시스템
(출처 : 비만인실리코푸드 시스템 웹사이트)


식품 이력 정보

갑자기 식품 이력 정보가 왜 나오지 하고 의아해할지 모르겠지만, 필자는 식품 빅데이터가 식품 정보의 생산부터 식탁에 올라오기까지의 정보를 포괄하는 의미를 식품 빅데이터라 정의하고자 한다. 식품의 이력 정보는 식품의 생산부터 유통까지의 일련의 정보들을 의미한다. 이러한 정보들은 안심하고 먹을 수 있는 먹거리를 만드는 데 필요한 정보이다. 우리나라는 현재 정부에서 축산물에 대한 이력제 정보 시스템을 운영하고 있다. 해당 시스템을 통해 소의 출생에서부터 도축, 포장처리, 판매에 이르기까지의 정보를 확인할 수 있다. 확인방법은 축산물 상품의 이력제 번호를 모바일/웹 애플리케이션에 검색하면 이력에 대한 정보들을 확인할 수 있다. 이러한 정보들은 위생과 안전에 문제가 발생하면 그 이력을 추적하여 신속하게 대처하기 위한 유용한 정보라 할 수 있다.


그림8. 쇠고기 이력 정보 활용예시

필자는 첫 도입 부분에 식품 데이터를 먹고사는 일이라고 표현했다. 식품 데이터는 단순한 정보의 개념에서 벗어나, 다양한 산업적 활용가치가 많은 정보기 때문이다. 중요한 것은 이렇게 많은 정보들로부터 우리는 어떤 가치를 만들어 낼 것인가이다. 식품빅데이터가 미래에 가져올 파장을 기대하며 이 글을 마무리하려고 한다.


Reference

  • 한국농수산식품유통공사, 외식트렌드 조사, 2013
  • 서울특별시 어린이 식품안전
  • Cell, Personalized Nutrition by Prediction of Glycemic Responses, 2015
  • R&D 동향, 영양 유전체학의 이해 및 연구동향



작성자 : R&D센터 DS그룹
이상민 주임 연구원

Posted by 人Co

2017/03/10 11:10 2017/03/10 11:10
, , , , ,
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/237



« Previous : 1 : 2 : 3 : 4 : 5 : ... 7 : Next »