« Previous : 1 : 2 : 3 : 4 : 5 : ... 8 : Next »

체외 진단기기(In Vitro Diagnostics, IVD)



체외 진단기기는 의료기기법 제2조에 포함하는 의료기기의 일종으로 질병의 진단과 예후, 건강 상태 판정, 질병 치료 효과 판정, 예방 등의 목적으로 인체로부터 채취된 대상물 인체로부터 채취된 대상물을 이용한 검사에 사용되는 의료기기를 말한다.

특성
타 의료기기 산업과 마찬가지로 IVD 산업은 높은 부가가치를 낼 수 있는 산업이나 소비자층이 일부 자가측정용 기기를 제외하고는 의료서비스에 종사하는 의사와 임상병리사로 국한되어 있어 안전성과 신뢰성을 중시하여 후발업체의 시장진입이 어려운 실정이다. 또한, 자가측정용 기기를 제외하고는 수요처가 병원과 검사센터, 보건소 등이나 품목 수가 매우 다양하며 Biology, IT 등 다양한 기술개발이 연계되어 계속 새로운 방법과 기기가 출현하는 분야이다. 체외 진단기기는 허가나 인증의 경우 환자에게 직접 적용되는 의료기기보다는 비교적 엄격하지 않다.

체외 진단기기의 분류
IVD 기기는 분류방법에 따라 다르게 나뉘고 있으며, 보건산업진흥원의 의료기기 16개 유형 분류에 따르면 체외 진단기기는 혈당측정기, 유전자분석기구, 체액 분석기기, 의료용 원심분리기, 혈액검사기기, 유전자분석기기, 소변 분변 분석기기, 체외 진단기기용 검사지 등으로 나누어 지고 있으며, 기술에 따라서는 8개의 세부분야로 나누어 지고 있다.


(출처:S&T Market Report vol. 40 (2016.03))

체외 진단기기 시장현황과 전망
체외 진단기기 시장은 약 522억 달러('14년 기준)로 '07년 이후 연평균 8.24%의 성장이 예상되고 있다. 현재 태동단계에 진입하여 지속적인 성장이 예상되며, 시장에서의 경쟁구도가 높고 기술변화가 빠르게 진행되고 있다. 미국이 가장 큰 154.9억 달러 규모를 형성하고 있으며, 그다음으로 서유럽지역이 138.4억 달러, 아시아 태평양 지역이 79.5억 달러 규모를 형성하고 있다 ('12년 기준). 특히 아시아태평양 지역의 경우 가장 높은 연간성장률(11.5%)로 향후 큰 시장이 형성될 것으로 전망된다. 분야별로 매출 규모를 보면 면역화학 시장이 35.8%의 시장점유율로 가장 큰 시장이고 다음으로 자가혈당측정 시장이 20.5%, POCT(point of care testing, 현장검사)시장이 11.8%의 시장 점유율로 시장을 구성하고 있다. 성장변화는 혈당 측정기가 속한 자가검사 시장과 분자유전검사 분야가 가장 급속도로 성장하고 있으며 기기의 성장 속도도 빠름을 알 수 있다.


(출처 : Medical Equipment Market Analysis & Forecasts to 2015, GlobalData (2009.05))

체외 진단 분야 시장은 NGS 기반의 분자진단의 경우 계속 높은 성장률을 보이며 전염병 진단과 같은 비종양학 분야로의 확장으로 성장이 촉진될 것으로 기대된다. 액체생검 기반의 동반진단검사는 FDA의 승인절차 간소화에 따라 본격적으로 시장이 확대될 것으로 전망되며, 종양 프로파일링에 활용될 것으로 기대된다. 기타 현장진단은 단순하고 저렴한 방식의 POCT의 수요가 지속해서 증가할 것으로 전망되며, 유전자 POCT와 암 POCT가 핵심 콘텐츠가 될 것으로 예측된다.

체외 진단기기 검정과 평가
체외 진단기기의 민감도(Sensitivity)와 특이도(Specificity)는 두 가지의 결과를 다룬다. 질환의 재발유▪︎무를 기준으로 나누고, 알고리즘 분석을 통해 재발 고위험, 저위험 두 그룹으로 나눈다. 따라서 재발이 된 그룹과 안 된 그룹, 재발 고위험군과 저위험군 등 총 4가지 그룹이 만들어진다. 이 4가지 그룹의 각 수를 이용하면 AUC(Area Under the ROC Curve)를 제외한 아래의 성능 항목을 평가할 수 있다.


(출처: 질병의 예후·예측에 사용되는 체외 진단용 의료기기 허가·심사 가이드라인 (2018. 08))

  • 민감도(Sensitivity) - “실제로 병에 걸린 사람 중에서 얼마나 정확하게 병에 걸린 것으로 나타났는가”를 의미(Sensitivity = a/a+c)한다. 민감도는 치명적인 병을 테스트하거나 고위험군을 선별하는 경우 중요하게 고려해야 할 사항이다. 따라서 이런 경우에는 알고리즘을 통해 치료를 받아야 하는 고위험군을 매우 잘 규정해야 한다. 민감도는 실제 재발(또는 발병)한 사람 중 알고리즘 분석결과 재발(또는 발병)할 것이라고 구분한 사람의 비율을 의미한다.
  • 특이도(Specificity) - “실제로 병이 없는 사람 중에서 얼마나 정확하게 병이 없다고 나타나는가”를 의미(Specificity = d/b+d))한다. 어떤 질병에 대한 저위험군을 선별하여 과도한 치료의 불필요성을 제시할 경우의 고려 대상이다. 특이도는 민감도와 반대되는 의미로, 실제 재발(또는 발병) 하지 않은 사람들 중 알고리즘 분석결과 재발(또는 발병)하지 않을 것이라고 구분한 사람의 비율을 의미한다.

체외 진단기기 허가 및 승인

체외 진단용 의료기기 분류

(출처: 질병의 예후·예측에 사용되는 체외 진단용 의료기기 허가·심사 가이드라인 (2018. 08))

등급별 허가 및 승인 절차

(출처: 질병의 예후·예측에 사용되는 체외 진단용 의료기기 허가·심사 가이드라인 (2018. 08))

맺음말

체외 진단 시장은 2014년 이후로 급격히 시장이 팽창하고 있으며, 앞으로도 지속해서 시장은 확대될 것으로 기대된다. 특히 국내의 경우 초고령화 시대와 정부의 규제 완화 정책이 맞물려 투자증가와 해외진출의 기회가 더욱 기대되고 있다. 다만 지속적인 가격 억제 정책으로 기업이 관련 제품을 생산하는데 어려움을 겪고 있으며 신흥부상국에서도 많은 관심을 보이고 있으므로 보다 적극적인 투자과 정부의 규제 완화 정책이 필요한 시점이다. 다행히 의료보험에서 새로운 검사 개발에 대한 인정이 매우 어려운 상황이었으나 최근 그동안 의약품으로 분류되어 어려움이 많았던 체외 진단 시약이 모두 기기와 함께 의료기기로 분류됨에 따라 국내 체외 진단기기 산업에 긍정적 효과를 기대해 본다.

마지막으로 신기술개발뿐 아니라 국익 창출을 위해서는 새로 찾은 마커를 검출하거나 측정할 수 있는 체외 진단기기 개발에 국가지원이 필요하다. 국내 체외 진단기기 업체는 대부분 중소규모의 기업으로써 국가적 지원 없이는 이러한 새로운 체외 진단기기와 시약 개발이 어려울 수밖에 없다. 따라서 정부는 투자비용이 많이 소요되는 대형 융합형 기기 개발과 같은 연구개발사업을 만들고 중소기업을 지원할 수 있는 다양한 정책을 수립해야 할 것이다.

참고자료

  1. S&T Market Report vol.40 | 2016. 03

  2. 질병의 예후·예측에 사용되는 체외 진단용 의료기기 허가·심사 가이드라인 (2018. 08)
  3. 체외 진단기기(In Vitro Diagnostics) 현황 및 전망 (KEIT PD Issue Report, 2014. 04)


BS실 이기용 실장

Posted by 人Co

2019/06/10 15:55 2019/06/10 15:55
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/314


 

봉와직염(蜂窩織炎: cellulitis)

군대 다녀온 남자들이라면 익숙하게 들어본 질병 중의 하나로 봉와직염이 있다. 웬만한 성인 남성들은 한 번쯤은 직간접적으로 겪어 본 흔한 질병의 하나이다. 군대에서 많이 걸리는 이유는 군화를 신고 오래 걷고, 발에 상처가 나도 제대로 치료를 못 해 덧나는 염증이다. 처음에는 그냥 무좀인 줄 알고 있다가 나중에야 심각함을 인지하는 나름 무서운 병이다. 환경이 열악하고 육체적으로 많은 일을 하며 잘 씻지 못하는 조건에서 많이 발병해서 군대에서만 걸리는 질병으로 인식하고 있지만, 최근에는 여러 이유로 면역력이 떨어진 상태에서 작은 상처 부위에 세균 감염되었을 때 많이 발생하고 있다. 상처가 마치 벌집 모양으로 번져간다고 해서 이러한 이름이 붙여지게 되었다.

봉와직염과 항생제

봉와직염은 진피와 피하 조직에 나타나는 급성 세균 감염증의 하나로 이들 세균이 침범한 부위에 홍반, 열감, 부종, 통증을 동반한다. 이의 주원인으로는 황색포도알균과 사슬알균 등에 의한 감염으로 병원 진료를 받게 되면 항생제 처방을 받게 된다. 그러나 이러한 봉와직염의 약 30%가 단순한 피부 감염인 가성 봉와직염(pseudocellulitis)으로 밝혀졌으며 이들 중 85%는 입원치료가 필요 없었고 92%는 불필요한 항생제가 투여됐는데 이는 봉와직염과 가성 봉와직염은 증상이 비슷해 구분이 어렵기 때문이다. 이로 인해 연간 13만 건의 불필요한 입원과 51억 5천만 달러의 불필요한 의료지출이 낭비되고 있다고 한다. 무엇보다 심각한 문제는 불필요한 항생제 투여가 항생제 내성을 부채질한다는 데 있다[1]. 

항생제와 내성

위의 사례처럼 우리가 흔히 접하는 봉와직염과 항생제를 살펴봤을 때도 항생제와 내성 문제가 대두하고 있다. 무분별한 항생제 남용과 오진으로 인해 항생제 사용량은 나날이 급증하고 있으며 그로 인해 항생제에 대한 내성을 가진 내성균이 출현하고 있다. 2016년 영국 정부가 발표한 항생제 내성균(AMR: AntiMicrobial Resistance)보고서에서는 현재 전 세계적으로 70만 이상이, 유럽과 미국에서 5만 이상이 내성 박테리아의 감염 때문에 숨지고 있으며, 인류가 특별한 조처를 하지 않으면 2050년에 이르러서는 1,000만 이상의 사망과 이에 따라 100조 달러 이상의 손실이 발생할 것으로 예측하였다[2].

 

[그림1] 인구 1,000명당 항생제 하루 사용량
(출처: 미국 국민과학운회보(PNAS)-생명공학정보센터)
)

 

최근 조사에 따르면 인구 1,000명당 항생제 하루 사용량은 고소득 국가를 비롯하여 저소득 국가까지 전반적으로 사용량이 증가하는 추세에 있다. 특히 주목할 점은 중상위 소득 국가에서 그 사용량이 기하급수적으로 증가하고 있다는 점이다. 이는 아마도 의료 복지의 수준이 상대적으로 양호해지면서 병·의원의 치료가 증가한다는 데 기인하였다고 추측해 볼 수 있다.


[그림2] 인체 항생제 사용량


[그림3] 황색포도알균 메티실린 내성률



[그림4] OECD 국가 항생제 사용량
(출처: 매일경제 (MBN) 2018.11.28. 항생제 남용심각... 30년 후엔 매년 1,000만 명 사망)
 
 

매년 유럽에서만 25,000명, 미국에서 23,000명 정도가 항생제 내성 균주에 감염되어 사망하고 있으며 패혈증은 시간당 9%씩 감소하는 생존율을 극대화하기 위해 항균제 감수성 검사 시간 단축이 매우 중요하다고 볼 수 있다. 즉 항생제를 빠르고 정확하게 처방하여 환자의 생존율을 높이고 동시에 항생제 내성 균주 발생을 억제해야 하지만 항생제 내성 검사의 경우 종동정부터 항생제 내성 검사까지 최소 16시간에서 40시간 이상의 시간이 소요되고 있다.

항생제 내성 균주로 매년 경제적 손실은 유럽에서 약 2조, 미국에서 66조 가량 된다고 추정하고 있으며, 이는 사망률 증가, 치료 기간 연장, 의료비용 상승 등 공중보건에 큰 위협이 되면서 사회경제적으로 큰 손실을 초래하고 있다.

항생제는 1928년 페니실린(Penicillin) 항생제의 발견 이후 1960년대까지는 항생제의 개발이 활발했지만, 새로운 계열의 항생제 부재와 기술의 한계, 그리고 빠르게 증가하는 각종 세균의 내성 문제 등으로 이후 항생제 개발은 감소하기 시작하여 항생제 오남용으로 인해 항생제 내성균이 증가함에 따라 유엔이 항생제 남용 방지 결의안을 채택(’16.09)하기도 하였다[3].

 

항생제 내성 기작

항생제의 역사는 1928년 플레밍(Alexander Fleming)이 페니실린(penicillin)을 발견하면서 시작되었다. 이 발견을 빌미로 2차 세계 대전 당시 상용화에 성공해 수많은 전염병 환자의 목숨을 구한 것은 익히 알고 있는 사실이다. 이후 질병의 원인이 되는 미생물의 사멸을 위해서 많은 항생제가 개발되었다. 항생제는 미생물이 생성한 물질로, 다른 미생물의 성장을 저해하여 항균작용을 나타내며 인체에 침입한 세균의 감염을 치료한다. 특히, 세균의 증식과 성장을 억제하는 약물이다. 항생제의 주요 작용 기전으로는 다음과 같다.

  1. 세포벽 합성 저해
  2. 단백질 합성 저해
  3. 핵산 합성 및 교정 저해

세균에는 대략 200개 내외의 필수 단백질들이 있으나 이 가운데 항생제의 표적으로 삼고 있는 유전자는 대략 3종류인데, 리보솜과 세포벽 생성에 관여하는 단백질 그리고 핵산의 구조 변형 및 합성에 작용하는 효소들이다. 이들의 성장과 증식을 억제함으로써 그 약제의 역할을 하는 것이다. 그러나 이러한 약제에도 내성을 가지는 미생물 특히 세균이 존재한다. 항생 물질에 대한 내성은 자연과 획득 내성로 구분할 수 있는데 특히 문제가 되는 것은 획득 내성으로 볼 수 있는데 획득 내성은 어떤 종이 갖고 있던 유전∙생화학적 성질이 변형되면서 해당 제제에 대하여 내성이 생기는 현상을 의미한다. 특히, 최근 들어서 문제가 되는 다양한 항균제의 오남용이 병원균 약제 내성의 선택적 발생을 부추김을 부정할 수 없다[4].

이에 신속하고 정확하게 항생제 내성을 진단하고 항생제를 처방하여 환자의 생존율 증대 및 항생제 내성 균주 발생을 억제가 필요하지만 현 항생제 내성 검사의 경우 최소 16시간에서 최대 2~3일의 시간이 소요되고 있다. 이는 초기 환자의 생존율을 낮추고 있으며 항생제의 오남용이 되는 근본 원인을 제공하고 있다. 따라서 단기간에 항생제 내성 여부를 판단하여 신속하고 정확한 처방을 통해 항생제 내성균 억제하는 것은 무엇보다 중요하다고 할 수 있다. 최근에는 기술의 발달로 RT-PCR 기술을 이용해 3시간 이내에 진단할 수 있어졌지만, 다양하게 변화하는 내성균의 유전자 정보를 추적할 필요가 있다. 특히나 한국에서는 항생제가 연간 1,000톤 정도가 사용 중이며 이는 한국 지역 환경의 변화에 따른 새로운 항생제 내성균의 출현이 예고된다.

 

IncoARG

이러한 환경변화에 따라 한국형 항생제 내성 유전자(다양성) 서열 및 정보를 수집할 수 있는 플랫폼 필요성이 주목받고 있다. 이미 ARDB 및 CARD와 같은 데이터베이스가 존재하지만, 한국인들에게서 발병한 항생제 내성균의 유전정보와 통합적으로 구성되어 있지 않다. 따라서 과거 50년 동안 수집 및 축적된 항생제 내성균 및 유전정보와 함께 최근 한국에서 발생하고 있는 내성균에 대한 유전 정보를 통합적으로 관리하고, 내성균의 변화에 대응할 수 있는 신속한 프로브 설계 기능을 필요로 한다. 분자 진단을 위해서는 해당 서열을 구별해 낼 수 있는 프로브가 필요한데 변이가 생긴 유전정보가 누락된 프로브라면 아무래도 그 감수성이 감소하기 나름이다. 이에 항생제와 관련된 세균 및 그들의 유전정보를 종합적으로 관리, 프로브 설계 기능을 갖춘 시스템을 (주)인실리코젠에서 개발하였는데 이른바 IncoARG이다. 주요 기능은 다음과 같다.

  1. 질병, 항생제, 세균 및 유전자의 상호 연관 DB 구축
  2. 항생제별 주요 세균 종에 대한 마커 후보 발굴
  3. 마커 후보에 대한 프로브 및 프라이머 디자인
  4. 항생제 내성 유전자딥러닝 기법을 통한 감수성 예측 모델 개발(예정)
 

[그림 5] IncoARG 화면 일부

 

어린이와 항생제

최근 항생제 내성과 관련하여 “국내 항생제 사용량, 여전히 OECD 1위 오명”, “CDC도 두 손 든 ‘악몽의 박테리아’.... 이대론 국내병원서 CRE 토착화 시간문제” 등과 같은 다양한 뉴스가 쟁점이 되고 있다. 실제로도 어린이들이 병·의원을 방문하게 되면 항생제는 거의 필수적으로 처방되고 있어 어린 나이에서부터 항생제에 노출된 것이 현실이다. 이에 부모들 사이에는 자식과 관련된 항생제 내성 문제를 외면할 수 없어 될 수 있는 대로 항생제를 처방하지 않는 병원이 인기라고 한다. 그러나 항생제를 전혀 사용하지 않는 것이 제일 나은 방법은 아니다. 특히 쉽게 치료할 수 있음에도 치료가 되지 않아 자주 병원을 방문할 뿐 아니라 환자에게도 감염이 확대될 수 있음을 충분히 인지해야 한다.

참고자료

  1. "봉와직염 진단 중 30%는 오진"
    https://www.mk.co.kr/news/photo/view/2016/11/774683/

  2. Tackling Drug-resistant infections globally: Final report and recommendations, The review on antimicrobial resistance chaired by Jim O'Neill, May, 2016.
  3. 항생제 특허 분석 보고서. 2017년 농림분야 생명자원 특허 DB 수집 및 분석 사업
  4. 약제 내성 문제에 대한 정보학 관련 연구 동향. 오석준
BS실 이규열 책임 개발자

Posted by 人Co

2019/05/21 13:05 2019/05/21 13:05
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/312

합성생물학 분야에서 컴퓨터 안에서 설계되어 작동하는 가상 세포(virtual cell)라는 개념이 있다. 단백질과 DNA, RNA 같은 분자물질 수준에서 생명현상을 연구하는 실험실 연구 방식과 달리, 세포의 대사 전반적인 과정을 컴퓨터로 구현해 생명 현상을 연구하고, 이를 미생물 공학에 응용하려는 방법이다. 이와 같이 세포는 사이버 공간에서 존재하므로, 소프트웨어는 세포의 대사 과정을 구현하는 중요한 연구 도구로써 사용되고 있다. 세포의 유전자 형질을 바꾸는 작업을 프로그래밍에 비유할 수 있는데, 즉 특정 대사 기능을 하는 DNA를 하나의 회로 설계로 간주하고, 이를 전자기기 논리회로 설계처럼 할 수 있는 합성생물학 프로그래밍 언어가 개발되었다.

"Cello" 라는 프로그래밍 언어는 미국 MIT의 합성생물학자인 Christopher Voigt와 보스톤대학, 미국표준기술연구소(NIST) 등의 연구진에 의해 개발된 생명체 DNA 회로 설계를 자동화하는 프로그램이다. 전자회로 프로그래밍 언어인 'Verilog'를 응용하여 세포의 유전자 회로를 설계하고, 이를 세포 내에 구현해 그 기능을 볼 수 있게 한 것이다.

[그림 1] cello logo (출처:http://cellocad.org)

유전자 회로 구성의 기본 원리는 유전자 발현을 조절하는 인자와 그 발현의 산물을 또 다른 유전자 회로의 활성인자(activator)나 억제인자(repressor)로 사용하게 하는 것이다. 유전자 회로의 입력으로는 산소, 당, 빛, 온도, 산성 등과 같은 환경 조건과, 다른 환경 조건을 탐지하는 감지인자를 직접 설계하여 줄 수 있다. 이러한 과정으로 활성화 및 생물학 반응을 일으키는 활성인자를 조합함으로써, 특정 대사 기능 유전자 회로를 설계할 수 있다. 이런 입력과 산출 과정에서 마치 전자회로 게이트들의 스위치 온/오프(on/off)와 같이 여러 유전자의 활성을 일으키거나 억제를 하면서 특정 반응의 회로를 구성하게 된다.

예를 들어, 두 개의 신호가 들어와 두 종류의 단백질을 발현하게 하고 그 발현된 두 종류의 단백질 모두가 합쳐져서 어느 다른 유전자 발현을 활성화하면 'AND 게이트'가 되고 억제하면 'NAND 게이트'가 되고, 둘 중 하나의 단백질만 가지고도 ON을 시킬 수 있으면 'OR 게이트'가 되는 원리이다.

유전자 회로 프로그래밍 언어는, 일반적인 프로그래밍 언어가 0, 1의 기계어로 번역되는 것과 마찬가지로 DNA 염기서열로 번역되고, 유전자 회로의 염기서열을 실제의 미생물 세포에 삽입해 실제로 설계에서 의도한 형질이 발현되는지 확인하는 과정을 거친다.


[그림 2] cello 프로그래밍 과정 (출처:http://cellocad.org)

이번 연구성과는 전자기기 논리회로 설계 방식과 마찬가지로 유전자 논리회로를 간편하게 구성할 수 있음을 보였다. 이는 유전자 회로도 결국에 활성화(activation)와 억제(repression) 등의 간단한 이진법적 스위치로 조절할 수 있음을 보여준 것이다.

이를 이용하여, 자동차를 실제 제작하기에 앞서 컴퓨터 가상 공간에서 세부 내용을 설계해 성능을 미리 확인해보듯이, 세포 생명의 부품이 되는 유전자 회로들을 프로그래밍 언어로 설계해 논리적 연산의 작동을 확인해봄으로써 살아 움직이는 세포의 새로운 형질을 미리 확인할 수 있다.

유전자를 변형해 대사 과정을 바꿈으로써 유용한 약물이나 희귀물질, 에너지 연료를 생산하는 미생물을 개발하는 과정은 무수한 시행착오를 거치며 이뤄지게 마련인데, 특정 대사 기능의 유전자 회로를 미리 설계하고서 제대로 작동하는지 확인함으로써 실제 미생물 실험의 시간과 비용을 대폭 줄일 수 있다.

또한, 단순히 시간과 비용만 줄이는 것이 아니라 우리가 그냥 생물학적으로 생각만 해선 설계하기 어려운 복잡한 회로들도 만들어 여러 가지 테스트를 해볼 수 있고, 최종 후보들에 대해 실제 실험을 할 수도 있다.

이처럼 감지와 반응의 유전자 회로를 정밀하게 설계할 수 있다면, 종양을 감지하면 약물을 분비하는 장내 미생물이나, 부산물의 독성이 많아지면 발효 과정을 스스로 멈추는 이스트 세포들 같은 유용한 물질을 분비 및 생산하는 미생물 같은 것을 만들 수 있으므로, 생물공학 분야에서 상당한 쓰임새가 있을 것이다.

더 정교한 회로들이 만들어질 수 있는 토대가 마련됐다는 것에서, 유전자 회로 설계의 자동화 기법이 합성생물학 분야에서 대표적인 연구결과가 될 만하다고 평가받았다. 앞으로 더 많은 회로를 제작하고 그 많은 회로가 서로 연결되어 더욱 복잡한 조절/대사 회로(regulatory/metabolic circuit)를 만들어가는 방향으로 발전할 것이다.

과거 (주)인실리코젠에서도 합성생물학 유전자 회로 디자인 및 관리를 위헌 시스템을 구축한 적이 있다. 좀 더 자세히 말하면, 유전자(DNA) 단위로 모듈화 데이터베이스를 구축 후 회로도를 직접 디자인하는 시스템을 구축한 사례이다. 이는 유전자회로 구성 방법에 관해서 관심과 시행착오를 겪었던 소중한 경험이었다.

[그림 3] 인실리코젠에서 구축한 유전자 회로 디자인 및 관리 시스템 (PartBank) 화면, 2014

생물 프로그래밍 기법은 복잡한 생물학 전문지식을 갖추지 못한 비전문가도 프로그래밍 언어의 도움을 받아서 원하는 기능의 유전자 회로를 손쉽게 설계할 수 있는 시대가 올 것이다. 이는 유용한 물질을 생산하는 ’세포 공장’의 활용 영역이 더욱 넓어지리라는 기대와 함께 바이오 해저드와 같은 안전과 환경 문제에 대한 우려와 대책도 더욱 필요해짐을 보여주는 것이기도 하다. 따라서, cello가 제시한 아이디어와 시스템 구축 경험을 잘 조합한다면, 다른 관점에서 생물을 정보화하는 재미있는 무언가를 보여 줄 수 있을 것이다.

참고자료

http://cellocad.org 
http://scienceon.hani.co.kr/385489 
https://youtu.be/SLn_SkL7vkQ <참조 3. Cello 데모영상>

작성 : 대전지사 신동훈 개발자


Posted by 人Co

2019/03/28 09:47 2019/03/28 09:47
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/308




언제부터인지 우리는 쌀쌀해진 기온이 코끝을 스치면 독감 예방주사를 맞고 겨울을 준비한다. 독감은 일반적인 감기와는 달리 전염성이 매우 크고 폐렴으로 이어지는 경우가 많아 일반인들에게도 다르게 인식되어 있다. 그도 그럴 것이 감기는 서로 다른 여러 종류의 바이러스들로 유발되지만, 독감은 '인플루엔자 바이러스'라는 명확한 질병체가 밝혀져 있고 그 치료제도 개발되어 있다. 그런데 왜 매번 다른 독감 예방접종을 하고, 증상이 조금씩 다를까? 그 이유는 매우 똑똑한 진화를 거듭하며 스스로 변화하고 있기 때문이다.


인플루엔자 바이러스 구조

[그림 1] 인플루엔자 바이러스의 구조
(출처 : 이일하 교수의 생물학 산책, 이일하)

독감 인플루엔자 바이러스는 nucleocapsid (NP)와 matrix (M) 단백질의 차이에 의해 크게 A, B 및 C형으로 구분된다. 이중 잦은 변이를 일으키며 사람에게 질병을 유발하는 것은 A형으로 바이러스 표면에 존재하는 헤마글루티닌(HA)과 뉴라미니데이즈 (NA)의 다양한 조합으로 그 형태를 변화시키고 있다. 현재 밝혀진 헤마글루티닌의 sub-type은 16개(H1~H16), 뉴라미니데이즈의 sub-type은 9개(N1~N9)로 대략적인 조합수를 생각해 봐도 144개의 다른 인플루엔자바이러스가 만들어질 수 있음을 알 수 있다. 그러나 더욱 문제가 되는 부분은 이러한 조합을 통한 변이 발생이 사람만을 숙주로 하는 것이 아니라 조류와 돼지에서도 발생이 되고, 서로 공유되어 더 다양한 변이가 발생할 수 있다는 것이다. 현재까지 보고에 의하면 사람에서는 주로 A/H3N2형, A/H1N1형 및 B형이 유행하고 있는데 변이를 통해 새로운 바이러스 주가 출현할 경우 유병률과 사망률이 많이 증가하는 것으로 보고되고 있다. 때문에, WHO를 중심으로 전 세계 인플루엔자 감시체계가 운영 중이며 그 유전자형을 밝혀 백신주와 처방제를 제시하는 등 유행에 대비하고 있다.


그렇다면 어떻게 올해 유행할 백신주를 제시하는 걸까?

일반적으로 WHO는 매해 2월 해당연도에 유행할 백신주를 제시하고 있는데, 이는 지난해 남반구에서 가장 유행한 A형 바이러스 2종류와 B형 바이러스 1종을 선정하여 북반구 지역의 나라들에 제시한다. 이를 백신화 한 것이 3가 백신이고, 여기에 B형 1종을 추가한 것이 4가 백신이 된다. 참고로, B형은 2개의 sub-type이 존재하는데, 이 중 한 종류의 항체만 가져도 나머지 한 종에 대한 방어를 어느 정도 수행할 수 있으므로 3가 백신만으로도 충분할 수 있다. 또한, 예방 접종 후 항체 형성은 2주, 효과는 6개월 정도 지속된다고 한다.


바이러스의 유전자형은 어떻게 판별되는 것일까?



유행하는 바이러스의 유전자형은 qRT-PCR을 통해 빠르게 확인한다. 이때, NP, M 또는 HA 유전자를 증폭시켜 유전자 염기 서열을 비교 분석 하게 된다. 각 sub-type은 재조합 변이에 따라 서로 유사 정도가 다른데, 그림 2와 같이 크게 두 그룹으로 구분되어 진다. 이러한 유전자 변이 정도에 따르면 H1, H2, H5, H6의 경우 모두 H1에서 변형된 형태로 볼 수 있다. 이러한 정보는 이후 임상학적 표현형이나, 숙주(사람, 조류, 돼지 등)의 기원을 예측할 수 있고, 나아가 예방, 예찰의 자료로 활용된다.


독감 즉 신종플루 치료제 타미플루의 기작은 어떻게 될까?

인플루엔자 바이러스는 숙주세포의 표면에 sialic acid를 포함한 receptor에 부착한 후 8개의 segments로 구성된 바이러스 유전체를 숙주세포의 세포질로 밀어 넣는다. 이때, 세포막 일부가 유입된 유전체 서열의 막을 형성하는 엔도좀을 형성하게 된다. 형성된 엔도좀 내부는 낮은 pH를 유지하게 되는데, 이로 인해 바이러스의 lipid layer, 즉, 껍질이 분해되고 바이러스 핵산이 세포질에 노출되게 된다. 노출된 핵산중 heterotrimeric influenza polymerase (FluPol)를 코딩하는 유전체만이 숙주세포의 핵 안으로 이동하게 된다. 이후 숙주세포의 polymerase CTD (c-terminal domain)를 인지하여 바이러스의 유전자를 역전사시키고 복제시킨다. 절대적으로 숙주 세포의 시스템을 활용하여 바이러스 유전자를 대량 복제시키는 시스템으로 이를 cap-snatching 이라 하며, 이로 인해 숙주 세포의 유전자가 발현되지 않는 것을 host shut-off라 한다.



숙주세포의 시스템을 이용해 다량 생산한 바이러스 단백질들은 다른 세포로의 이동을 위해 virus particle을 형성하고 숙주세포로 부터 떨어져 나와 다른 세포로 확산된다. 이때, 바이러스는 HA와 NA를 표면에 이미 배치하고, 숙주 세포의 표면에 존재하는 sialic acid와 HA가 최종 결합되는 구조를 형성한다. 이후 NA(neuraminidase)는 근처의 HA와 sialic acid 결합을 끊어 세포로부터 분리 되게 한다. 타미플루는 이러한 바이러스 생활사 중 NA의 활성을 억제하여 다른 세포로의 확산을 방지하는 방법으로 바이러스에 대응하고 있어야 한다. 바이러스의 증식은 일반적으로 감염 후 48시간 이내에 모두 이뤄진다. 따라서 타미플루의 복용은 감염 후 48시간 이내에 이뤄져야 NA 활성을 낮춰 세포 내 확산을 막을 수 있다.

작성 : RDC 신윤희 센터장

Posted by 人Co

2019/03/02 22:44 2019/03/02 22:44
, ,
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/306

프로바이오틱스 (Probiotics)





[그림 1] 장내에 서식하는 다양한 미생물


사람의 체내에는 수많은 미생물이 살고 있다. 체내 미생물들만 따로 추려 무게를 재면 약 1~1.5kg 정도라고 한다. 이러한 미생물들은 사람의 몸 곳곳에 존재하는데, 가장 많이 서식하는 곳이 바로 사람의 장이다. 미생물들은 여러 종이 서로 군집을 이루며 서식하게 되는데 이를 미생물 균총(菌叢, colony)이라고 한다.
사람의 장내에서 크게 다섯 종류의 Phylum(문)이 - Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, Verrucomicrobia - 균총의 주를 이루고, 이 중 Bacteroides문과 Firmicute문이 약 80% 이상을 차지한다. 이 미생물 균총은 숙주가 섭취하는 음식이나 건강 상태 등에 의해 변화하며 영양소 대사 과정이나 면역 반응 등에 관여하는 것으로 알려졌다.

2006년 제프리 고든 박사는 비만한 쥐와 그렇지 않은 쥐의 장내 미생물을 무균 쥐에 각각 투입한 뒤 같은 먹이를 먹였을 때 비만한 쥐의 장내 미생물을 투입한 쥐가 더 살이 잘 찐다는 연구를 발표했다. 이는 장내 미생물이 숙주의 대사에 영향을 미친다는 점을 시사하여 학계에 큰 반향을 일으켰다. 이후 체내 미생물들에 관한 다양한 연구들이 진행되면서 이들이 비만 등의 대사성 질환뿐 아니라, 신경계 질환이나 노화 등 다양한 질환과 관계가 있다는 사실이 밝혀졌다.

이렇게 미생물 총이 인간의 건강에 미치는 영향들이 밝혀지면서 건강한 장내 미생물 균총을 도움이 된다고 알려진 프로바이오틱스(Probiotics)가 세계적으로 주목받고 있다. 세계보건기구(WHO)에 따르면 프로바이오틱스란 체내에 충분한 양이 투입되었을 때, 건강에 좋은 영향을 주는 살아있는 균을 뜻한다. 즉 하나의 물질이 아니라 살아있는 균들을 말한다. 이 균들 중 대다수는 유산균, 비피더스균 등이 발효 식품에서 주로 찾아볼 수 있는 균들이다. 최근 프로바이오틱스는 분말이나 발효유 등과 같은 형태로 상품화되어 건강기능식품으로써 약국 등에서 판매되고 있으며 국내 건강기능 식품 분야에서 빠르게 성장하고 있다. 2017년 기준 식약처의 조사에 따르면 프로바이오틱스는 홍삼, 비타민에 이어 세 번째로 큰 시장을 형성하고 있는 것으로 볼 수 있다(그림2 참조). 프로바이오틱스는 안정성과 기능성을 기준으로 선발되며, 한국의 식약처는 19종의 균을 프로바이오틱스 균주로 인정하고 있다(표1 참조).

[그림 2] 2017년 건강기능 식품 품목별 매출 현황
식품의약품안전처, 건강기능식품 생산실적 통계 (2017)


[그림 3] 프로바이오틱스 균주
프로바이오틱스의 안전한 사용을 위한 연구(2016) 한국보건의료연구원


장내에서 균총을 이루며 서식하게 되는 프로바이오틱스가 체내에서 어떠한 역할을 하는지 밝히는 연구가 지속해서 진행되면서 프로바이오틱스들의 메커니즘들이 밝혀지고 있다. 균주별로 다른 기능을 하는 것으로 알려졌지만, 지금까지 알려진 프로바이오틱스의 기능은 다음과 같다.

  1. 체내에서 소화되지 않는 탄수화물을 분해하고 지방산, 비타민 아미노산 등을 합성하여 소화 및 대사를 돕는다.

  2. 프로바이오틱스가 생산하는 대사물질들이 유해균의 증식을 억제하고 유해균이 장내 상피세포에 부착하는 것을 저해함으로써 장내 균총을 안정화시킨다.

  3. 면역 기능을 조절하는 cytokine의 발현을 억제하거나 유도하여 면역 기능을 개선하는 역할을 한다.

  4. 대사과정에서 생성되는 유기산 등이 콜레스테롤 합성을 저하해 전체 혈중 콜레스테롤 농도를 낮춘다.




[그림 4] 프로바이오틱스 섭취 시 기대되는 효과

그러나 프로바이오틱스의 효과는 알려진 것보다 크지 않다는 연구결과도 있다. 최근 한 연구에서는 프로바이오틱스를 섭취한 사람의 장내 미생물과 대변의 미생물을 조사한 결과 대변과 장내 미생물 균총의 일부만 연관성이 있다는 연구 결과를 발표했다. 프로바이오틱스를 섭취한 대다수 사람의 대변에서는 프로바이오틱스 균이 발견되었지만, 사람의 장내에서 균주가 정착하지 못한 경우가 더 많다는 결과를 보인 것이다.



[그림 5] 프로바이오틱스 섭취 시 발생할 수 있는 부작용


부작용에 관한 사례도 보고되고 있다. 국내에서도 프로바이오틱스가 원인으로 추정되는 부작용 신고사례가 2009년 이후로 건강기능식품 부작용 신고센터에 꾸준히 접수되고 있다. 주로 나타나는 부작용으로는 복부팽만감, 두통, 설사, 알레르기 같은 면역 과민 반응 등이 있다. 또한, 과다 복용 등 잘못된 복용방법이나 섭취 위험군이 섭취한 경우 감염 등의 부작용에 의해 사망에 이르는 일도 있다. 특히, 미국 FDA에서는 프로바이오틱스 섭취 고위험군(면역억제환자, 구조적 심장질환 환자 등)을 따로 분리하여 프로바이오틱스 섭취에 주의할 것을 경고하고 있다. 또한, 장구균(Enterococcus)의 경우 항생제 내성을 가지게 하는 유전자를 가진 균주로 장내 미생물 균총 내에서 항생제 내성 유전자 확산 가능성이 우려되며 이에 관한 연구도 진행되고 있다.

아직 논란의 여지는 있지만, 여러 연구의 성과로 프로바이오틱스가 체내에서 어떤 역할을 하는지 밝혀지고 있고, 어쩌면 의료용 혹은 치료 약물로써 인류의 건강에 중요한 역할을 하게 되는 미래가 올지도 모른다. 다만, 현재까지의 프로바이오틱스는 어디까지나 건강보조식품임을 기억하고 복용하는데 주의를 기울여야 할 것이다.

참고문헌



작성자 : BS실 박혜선 주임

Posted by 人Co

2018/11/05 09:06 2018/11/05 09:06
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/296

"2013년 우리나라의 에이즈 감염자는 누계 1만 명을 넘어 공식적으로 에이즈 확산 위험 국가가 되었습니다. 2008년 백신 개발 국제 심포지엄에서, 한국은 에이즈 감염자가 잠복기를 거쳐 '폭발 직전'이라는 발표가 있었습니다. 한국에이즈학회 부회장은 '미국이나 태국의 사례를 보면 에이즈 감염자가 1만 명을 넘어서면서부터 신규 감염자가 기하급수적으로 증가한다. 우리도 이와 비슷하게 에이즈가 증가할 가능성이 크다'며(동아일보, 2008.4.4.) 한국이 에이즈 확산 위험 국가가 될 것을 경고한 바 있습니다."
한국은 "에이즈 위험국가?" 그것도 틀렸다. 中 발췌
http://www.newsnjoy.or.kr/news/articleView.html?idxno=220301

위와 같이 2014년에 건강한 사회를 위한 국민연대 블로그에 "한국은 에이즈 위험 국가?" 라는 글이 올라오면서 많은 이슈가 되었다. 하지만 최근에 이 블로그 글에 대한 해명 자료가 발표되면서 AIDS(후천성 면역결핍증, Acquired Immunodeficiency Syndrome)와 HIV(인간면역결핍바이러스, Human Immunodeficiency Virus)에 대한 대중의 관심이 높아지고 있다.
이들이 말하고 있는 "에이즈 위험 국가"라는 게 무엇인지 짚기 전, 또한 감염인이라고 하여 차별받지 않도록 먼저 HIV와 AIDS에 관해 공부해보도록 하자.

우리 몸의 면역시스템

우리 몸의 면역시스템은 다음과 같이 간단하게 설명할 수 있다. 먼저 우리 몸에 Non-self한 병원균(pathogen)이 들어오게 되면, 초기에 macrophage, NK cell 등의 대식세포가 병원균을 인식하고, 해당 병원균의 정보를 Helper T-cell로 전달하게 된다. 그 병원균의 정보를 통해 killer T cell이 해당 병원균을 직접 죽이거나 B cell을 통해 그 정보를 기억해 두었다가 이후에 다시 침투하였을 때 병원균이 작용하지 못하도록 항체를 만들어 물리치고 있다.





HIV와 AIDS의 정의

HIV는 Human Immunodeficiency Virus로 인간의 면역체계를 파괴하는 레트로 바이러스이다. 즉 단백질과 RNA로 된 바이러스로 구성되어 있다. 우리 몸에 침투한 HIV 는 바이러스의 정보를 다른 세포들에 전달하는 Helper T-cell 중 하나인 CD4+ T-cell 을 공격한다. 우선 CD4 T-cell 에 구멍을 뚫고, 자신의 RNA를 세포 속에 집어넣는다. 세포 안에 들어간 RNA는 ‘역전사효소’라는 효소를 만들어 DNA로 변신한 다음 CD4의 DNA 속에 끼어들어 간다. 다음은 CD4를 이용해 수백~수천 개 HIV로 증식한다. 충분히 증식한 HIV는 CD4의 ‘자살유전자’를 활성화시키는 것으로 알려졌다. 즉 이용가치가 끝난 CD4에게 ‘자살하라’는 명령을 내림으로써 CD4를 죽게 만드는 것이다. 이를 통해 CD4가 혈액 1ml 안에 2백 개 이상 떨어지게 되면, 우리 몸의 면역 체계가 무너지게 되어 평소 쉽게 퇴치했던 병균들이 우리 몸을 유린하게 된다. 이를 후천적 면역결핍 증후군(AIDS)라고 한다.




[그림2] HIV life cycle


HIV의 감염

HIV의 전파는 바이러스 또는 바이러스에 감염된 세포가 있는 체액의 접촉을 통해 이루어진다.

의학계 통계에 따르면 HIV가 체내로 유입될 확률은 보균자의 혈액을 직접 수혈받을 때가 95% 이상, 감염된 산모가 출산하였을 때 아기가 보균하게 될 확률이 25~30%, 의료행위 중 사고가 0.3%, 성관계를 통한 확률이 0.1~1%로 나타나고 있다. 그러나 대부분의 감염 즉, 약 98% 이상의 HIV가 전염되는 경우는 성관계를 통한 전염이라고 한다.
많은 사람들이 에이즈의 전염 경로를 오인하여 보균자들이 불가피하게 사회로부터 고립되는 경우가 종종 있다. 침, 땀 등의 타액 또는 감염인과의 피부접촉, 모기 등으로는 전염되지 않는다고 하니 특별한 의료사고가 일어나지 않는 한 AIDS에 걸릴 일은 상당히 드문 일이다.



[그림3] HIV 감염경로


HIV 잠복세포

HIV 감염환자에 대한 anti-retroviral therapy 등의 치료법 도입으로 인해 HIV로 인한 사망률이 크게 낮아지고 있다. 그러나 HIV virus의 일부는 잠복감염 상태로 비활성화되어 CD4 T-cell 에 삽입된 채로 치료법으로도 완벽히 제거되지 않아 치료를 중단하게 되면 재활성화되는 것으로 알려졌다. 이러한 잠복감염 세포까지 완전히 제거하는 것이 HIV의 완전한 치료이므로 HIV 잠복세포의 메커니즘과 제거를 위한 연구가 다각도로 이루어지고 있다.



[그림 4] HIV의 잠복
출처 : HIV latency and reactivation model(Cohen et al., 2011)


HIV 잠복세포와 후성유전적 요소의 역할

HIV 잠복감염의 메커니즘을 밝히기 위하여 인간 게놈상의 virus 삽입 위치, Tat 혹은 Rev와 같은 virus 단백질의 역할, 숙주 세포의 전사 인자나 microRNA와 같은 조절인자, virus 삽입 위치의 히스톤 변형 혹은 메틸화와 같은 크로마틴 상태 등 다각도로 연구가 진행되고 있다. 그 중 특히 HIV 잠복세포 내의 삽입된 HIV 전사 작용이 후성유전적으로 이루어지고 있다는 보고가 아래와 같이 지속해서 이루어지면서 HIV 만성감염 세포에서 HIV 5' LTR의 후성유전학적 변형이 HIV의 전사 및 복제를 조절하는 것을 확인할 수 있었다.


  1. 히스톤 아세틸화를 제거하는 효소인 HDAC은 YY1, LSF, CBF1과 같은 숙주의 전사인자들에 의하여 HIV의 LTR에 결합하여 HIV의 전사를 억제함(Gordon et., al 2006, Ylisastigal et al., 2004, Williams et al., 2006).
  2. 전사 유도와 주로 관련이 있는 히스톤 아세틸화와는 달리, DNA 메틸화는 발현 유도와 억제 기능이 모두 알려졌는데, 그 중 H3K9me3 변형은 SUV39H1 효소에 의해 매개되어 HIV LTR에 heterochromatin 을 형성함으로써 전사를 억제함(du Chene et al., 2007).
  3. 다른 전사 억제효소인 CTIP2는 HDAC1, HDAC2, SUV39H1, HP1 단백질들을 유도하여 heterochromatin 을 형성함으로써 HIV 전사 억제를 유도함(Marban et al., 2007)

[그림 5] HIV 잠복세포를 조절하는 후성유전학적 기작
출처 : Epigenetic regulation mechanism of HIV latency cell(Coiras et al., 2009)


참고 영상

(1) HIV/AIDS 치료는 왜 그렇게 어려울까요 - 쟈넷 이와사(https://youtu.be/0TipTogQT3E) 
(2) 인간 면역 결핍 바이러스, HIV란?(https://youtu.be/uMGtJa7jPo4)


작성자 : DSC 박 원

Posted by 人Co

2018/10/19 08:40 2018/10/19 08:40
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/295

반려견을 위한 유전자 검사

개(Canis lupus familiaris)는 식육목 개과에 속하는 동물로 회색 늑대(Canis lupus)의 아종입니다. 미토콘드리아 DNA 분석 결과 현대의 개와 회색 늑대는 약 10만 년 전에 분화된 것으로 추정하고 있으며, 최근 화석을 이용한 연구에서는 3만 5천 년 전에 분화되었을 것이라고도 합니다. 개과의 늑대, 코요테, 자칼, 개는 서로 자유롭게 교잡할 수 있으며 이들의 잡종 역시 번식력을 유지하기 때문에 개는 "아종" 입니다. 인간이 처음 가축으로 삼으면서 인간과 밀접한 관계를 유지해 왔고, 더 나아가 인간의 소외현상을 개선하고, 공동체 생활의식 향상에도 이바지하면서 "반려견"으로 불리고 있습니다.



현재의 반려견으로 진화하는 과정에서 인간에 의해 계속 "품종 개량"되었습니다. 품종을 공인받기 위해 특정한 특징만을 남기는 과정에서 유전자 병목현상이 있었고, 이로 인해 적절한 유전적 다양성을 확보하지 않으면 유전적으로 취약한 질병을 갖게 되었습니다. 순종 반려견을 선호하는 경향은 근친 교배를 심화시켰고, 유전병이 빈번하게 되었습니다. 대표적인 반려견의 유전병으로 고관절 이형성증(Hip dysplasia), 슬개골 탈구(Patellar Luxation), 퇴행성 골수염(Degenerative Myelopathy), 백내장(Cataract) 등이 있고, 일부는 퇴행성으로 반려견 노년 삶의 질을 크게 떨어뜨리기도 합니다.


(퇴행성 유전질환 가운데 하나인 슬개골 탈구 - 왼쪽 정상)

반려견의 건강 역시 인간과의 삶에 영향을 미치기 때문에 유전병 여부를 사전에 알 수 있다면, 건강 관리, 교배 계획에 참고할 수 있습니다. 특히, 퇴행성 유전 질환의 경우 발병 전 예방하는 조치를 하거나, 발병 초기에 대응하여 증세가 심해지는 것을 방지할 수 있습니다. 이를 위한 반려견 유전자 검사 서비스가 최근 국내외에 소개되기도 했습니다. 직접 고객에게 제공하는(DTC, direct to customer) 인간 유전자 검사 서비스가 각종 규제로 인해 활성화 어려운 것과 비교하여, 반려견 대상은 규제에서 비교적 자유롭다는 장점이 있긴 하지만, 그렇다고 과학적 합리성에 근거하지 않으면 안 되겠지요.

웹에서 검색해 본 국내외 반려견 유전자 검사 서비스 현황입니다.



이들 서비스는 반려견 유전 질환에 대한 검사와 함께 혈통검사, 품종판별 서비스를 제공하기도 합니다. MyDogDNA의 경우에는 "Puppy search engine" 이라는 온라인 서비스를 통해 유전자 검사 결과와 함께 교배 프로그램으로 원하는 형질을 얻을 수 있는 짝을 추천하기도 합니다. 국제적으로 유명한 사료회사 로얄캐닌(Royal Canin)은 혈통정보, 표현형정보, 유전자 검사 결과를 통합하여 맞춤형 사료를 추천하는 고급 서비스를 제공합니다.

이들 서비스는 유전자 검사를 위한 유전좌위(locus)를 어떻게 정했을까요? 생물종별 유전 질환 데이터베이스를 참고했을 것으로 추정됩니다. 인간을 위한 유전 질환 데이터베이스로 OMIM(Online Mendelian Inheritance in Man) 이 있고, 대표적인 NCBI 데이터베이스 가운데 하나입니다. 유사하게 동물을 위한 데이터베이스로 OMIA(Online Mendelian Inheritance in Animal) 가 있습니다. 135여 개의 동물 종에 대한 유전 질환, 연관된 유전자 혹은 유전좌위 정보를 제공하고 있습니다. 예상했던 것처럼 "Dog"의 정보가 가장 많습니다. 반려견에서 원인 유전변이가 알려진 유전형질 혹은 유전 질환은 2018년 8월 현재 243개입니다.


(동물 유전 질환 정보 데이터베이스인 OMIA 홈페이지 http://omia.org)

반려견의 주요한 유전 질환에 대한 새로운 유전좌위를 찾기 위한 전장유전체 연관분석 (GWAS, Genome-wide association analysis) 연구도 활발합니다. 최근 150품종, 4,224개체, 고관절 이형성증을 포함한 7개 복합 질환에 대한 GWAS 연구 결과가 보고되기도 했습니다 (Jessica et al., Complex disease and phenotype mapping in the domestic dog., Nature Communications 2016).

하지만, 아직은 기반 연구가 많이 부족한 상황입니다. 우리와 가장 가까운 생물 종이며, 친구이고, 가족이기도 한 반려견이 유전 질환으로 고생하지 않고, 건강하게 함께 하기 위해서는 더 많은 유전 질환, 종합적인 데이터 분석 연구 등이 필요합니다. GWAS를 비롯한 다양한 연구로 유전 질환과 연관된 유의한 유전변이를 찾아내면 이를 유전자 검사로 확인하여 반려견 유전 질환 여부를 사전에 알 수 있거나, 교배 프로그램에서 관리할 수 있습니다. 퇴행성 유전 질환의 경우 사전에 예방하거나, 초기에 집중 치료함으로 악화되는 것을 막고 반려견 노후 삶 질을 개선할 수 있습니다. 다양한 연구성과로 반려견과 우리의 건강한 삶에 이바지할 수 있기를 희망합니다.

인실리코젠은 반려동물연구사업단에 참여하여 "반려견 퇴행성 조기진단 바이오마커 개발 연구"를 수행하고 있습니다. 본 블로그를 통해 지속적으로 연구 성과를 소개하고자 합니다. 응원 부탁드립니다.


데이터사이언스센터 센터장 김형용



Posted by 人Co

2018/08/27 17:27 2018/08/27 17:27
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/289

우장춘의 삼각형

봄에 피는 유채꽃

싱그러운 봄꽃 구경은 많이 하셨나요? 추운 겨울을 지나고 따듯한 봄에는 정말 많은 꽃이 핍니다.
가장 먼저 피는 진달래부터 벚꽃, 동백꽃, 철쭉 등 정말 다채로운 꽃들이 개화하는 시기여서 많은 사람을 설레게 합니다. 특히 제주도를 비롯한 남부 지방에 광활하게 개화한 유채꽃밭은 관광명소로도 유명합니다.


이미지 출처 : 출사코리아 남지유채꽃 축제 김병영作  http://chulsa.kr/23046174

유채는 관상용뿐만 아니라 카놀라유, 쌈 채소인 가랏나물, 부신백질이양증(ALD) 치료제인 로렌조 오일에 원료 등으로 사용됩니다. 또한, 유채는 생물학계에 큰 파문을 일으킨 식물 중 하나입니다. 유채의 경우 배추와 양배추의 자연 교잡으로 생겨난 식물이며 '종의 합성' 이론을 뒷받침해주는 식물입니다.

이러한 사실을 증명해 낸 것은 '씨 없는 수박'으로 유명한 한국의 육종학자 우장춘 박사님입니다.

우장춘의 삼각형

종의 합성 이론은 '배추속 식물에 관한 게놈 분석'이라는 박사 논문을 통하여 최초로 학계에 발표했습니다. 배추(B. campestris, 염색체 수 n=10)와 양배추(B. oleracea 염색체 수 n=9) 씨앗을 교배해 새로운 식물을 만들어 냈습니다. 새로운 식물의 염색체 수는 19개이고 이는 배추의 염색체 개수 10개와 양배추의 염색체 개수 9개에서 유래된 것입니다. 결국, 이 새로운 식물은 기존의 자연 상에 존재하던 유채(B. napus 염색체 수 n=19)와 같은 식물임을 입증해낸 것입니다.

이뿐만 아니라 배추와 흑겨자(B. nigra 염색체 수 n=8)를 교배하면 갓(B. Juncea 염색체 수 n=18)이 만들어지고 흑겨자와 양배추를 교배하면 에티오피아 겨자(B. carinata)가 만들어지는 것을 밝혀냈는데 이를 우장춘의 삼각형(U's triangle)이라 부릅니다. 그는 이를 통해 속이 같고 종이 다른 식물이 유전적으로 서로 연결돼 있다는 사실을 처음으로 증명한 것입니다.


이미지 출처 : by Adenosine(English Wikipedia) CC BY-SA 2.5

원 안은 염색체로 녹색은 배추(n=10), 파란색은 양배추(n=9), 빨간색은 흑겨자(n=8)의 염색체이며 n은 염색체 수입니다. 이들 사이에서 에디오피아 겨자(n=17), 갓(n=18), 유채(n=19)를 만들 수 있습니다.

추후 이 연구는 세종대학교 김현욱 교수(前 : 국립농업과학원 생물소재공학과 연구사) 유채 유전자 분석을 통해 '오메가6 지방산' 생산 유전자가 배추와 양배추에서 유래됐음을 확인한 사례도 있습니다.

연구 결과 유채에는 오메가6 지방산 생산 유전자인 'FAD2 불포화지방산 생산 유전자'가 4개 존재하며, 그중 2개는 배추에서 나머지 2개는 양배추에서 각각 유래됐음이 밝혀낸 것입니다.




이미지 출처 : 충북일보 2013.10.28 유채 '오메가6 지방산' 배추·양배추에서 유래 기사 발췌

유채에서 발견된 4개의 FAD2 유전자의 세포 내의 발현 위치=유채 BnFAD2-1, BnFAD2-2, BnFAD2-4는 소포체에 존재했고, BnFAD2-3은 돌연변이에 기인해 정상적인 발현 위치가 아닌 핵과 엽록체에 존재합니다.



종의 기원을 보충하다

당시까지만 해도 같은 종끼리만 교배가 가능하다는 것이 학계의 정설이었습니다. 하지만 우장춘 박사님은 같은 속에 속한 다른 두 종끼리 교배하면 같은 속에 속한 또 다른 종이 탄생할 수 있다는 사실을 입증했습니다.

다윈의 진화론은 서로 다른 종이 각자 환경에 적응해 개별적으로 진화한다는 내용입니다. 우장춘 박사님의 '종의 합성' 이론은 서로 다른 종이 교배를 통해 새로운 종으로 진화할 수 있다는 가능성을 제시했습니다.

종의 합성은 두 식물이 가진 염색체의 2배체, 즉 2n의 각각의 n이 서로 모여 다른 식물을 이룬다는 것을 보여주는 사례입니다. 즉 배추, 흑겨자, 양배추 등 세 개의 종 사이에 자연적인 교배가 일어나 유채와 같은 새로운 종이 만들어졌을 수 있다는 것을 입증하는 것입니다. 이를 통해 진화론의 '종은 자연도태의 결과로 성립된다'는 내용을 보충하는 것으로 평가받고 있습니다.


마치며

'종의 합성' 이론은 단순한 과학적 이론을 넘어 실생활에서도 많이 사용되고 있습니다. 특히 스웨덴의 경우 양배추와 다른 야채류를 교배해 여러 품종을 개발하였기에 우장춘 박사님을 세계 10대 육종학자로 인정하고 있습니다.

아직까지 해외 과학 교과서에 사실상 유일무이한 이론의 창시자로 실리는 우장춘 박사님이, 국내에선 단지 씨 없는 수박의 개발자로 알려진 것은 그만큼 우리가 그의 업적을 잘 모르고 있는 것이 아닐까요?

아름다운 유채꽃밭을 구경하시면서 유채꽃에 담겨 있는 과학적인 사실도 한번 되돌아봐 주셨으면 하는 취지에서 이 글을 올립니다.

작성자 : BD팀 김성민 컨설턴트

Posted by 人Co

2018/05/20 18:03 2018/05/20 18:03
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/281

임상유전체란?

유전체 염기서열 및 오믹스(Omics) 분석을 통해 얻은 정보를 이용하여 환자의 질병 진단과 맞춤 치료에 사용하고자 하는 분야이며, 차세대 염기서열 분석(NGS, Next Generation Sequencing) 기술의 비약적인 발전으로 최근 크게 성장하고 있다.

많은 의료 및 연구 기관들에서 임상유전체 정보를 분석하며 질병의 원인을 이해하고 진단과 치료에 활용하고자 하는 연구들이 활발히 이뤄지고 있다.

작년 3월, 우리나라는 차세대 염기서열 분석 기반의 유전자 패널 검사가 실시되면서 NGS를 통한 임상 유전체 데이터 생산이 급격하게 늘고 있고, 정밀의학 실현을 위하여 임상유전체 분야의 관심과 발달은 전 세계에서 미래 투자 산업으로 뜨겁게 떠오르고 있다.
.

<그림 1. 임상유전체 연구를 위한 NGS의 활용>

.
임상유전체 분석을 쉽게 하는 방법

최근 NGS 데이터 분석이 대중화되긴 했지만 한정된 연구비 수준에서 NGS 데이터를 생산, 저장하고 분석하는 시스템을 구축하기는 쉽지 않다. 특히 대용량 데이터를 신속, 정확하게 분석하여 의미 있는 결과를 얻어내는 소프트웨어 기술들의 발전은 그 속도가 상대적으로 더딘 편이다.

또한, 일반적으로 대용량 데이터를 다루는 데 있어서 공개된 소프트웨어들은 커맨드라인 형식이 대부분이다 보니 생물정보를 접해보지 않은 연구자들에겐 더욱이 어려운 상황이다.

이러한 환경에서 대용량 임상유전체 분석을 쉽게 진행할 수 있는 솔루션을 소개해보고자 한다.
.

- NGS raw 데이터부터 변이 확인까지

일반적으로 NGS 시퀀싱 서비스를 수행하면 1차 분석결과까지 받게 되는 경우가 많다. 하지만 변이 분석은 파라미터를 어떻게 설정하느냐에 따라 결과가 다르고 원하는 영역의 변이 정보를 얻지 못할 경우가 있다.

Biomedical Genomics Workbench는 Human Genome의 NGS 데이터 분석에 특화된 GUI 기반의 소프트웨어이다. Somatic Cancer와 Hereditary disease의 변이 분석에 최적화되어 있으며, 다량의 샘플에 대한 복잡한 분석도 기본적으로 내장된 워크플로우 혹은 커스터마이즈한 워크플로우 제작을 통해 분석 효율성을 극대화할 수 있다.

더불어 다양한 NGS 플랫폼의 데이터 포맷을 지원하기 때문에 쉽게 raw 데이터부터 분석이 가능하고, 1000Genome, ClinVar, HapMap 등 다양한 public database들을 포함한 패키지를 손쉽게 다운로드 받아 사용할 수 있다.

그리고 변이분석 뿐만 아니라 RNA-seq 분석을 통해 발현량 및 발현패턴 분석까지도 수행할 수 있다.

<그림 2. 사용자 편의적인 인터페이스의 변이 분석>
<그림 3. 워크플로우의 제작>


- 의미있는 변이의 필터링

앞서 변이 정보들을 얻고나면 이 중에서 질병과 연관된 또는 질병을 일으키는 의미 있는 변이들을 찾아내야 한다. 하지만 수십만 개 변이 중에 원인이 되는 변이를 찾는 일은 단순하지 않다.

Ingenuity Variant Analysis(IVA)는 이러한 어려운 문제점을 해결해주는 변이 분석 플랫폼이다. 타겟 변이 리스트들을 생물학적 필터 기준을 통한 검증의 우선순위를 설정할 수 있고, 관심 phenotype에 관련한 변이 정보와 집단에 대한 통계분석 바탕으로 변이 정보를 필터링할 수 있다.

또한, 생물정보학적인 기술이 없어도 쉽게 다룰 수 있는 사용자 친화적인 인터페이스로 변이가 존재하는 유전자의 upstream/downstream의 1~2단계 내에서 변이 식별도 가능하다.

<그림 4. 변이정보의 필터링>


- 질병 유발 변이정보 확인

Human Gene Mutation Database(HGMD)는 문헌에 보고된 Human에서 유전질병을 유발하는 돌연변이 및 질병관련 정보들을 포함하고 있는 데이터베이스이다. 오랜 기간 전문가들의 큐레이션을 통해 안정화되었고, 현재 보편적으로 임상유전체 연구에서 활용되고 있는 데이터베이스이다.

온라인 버전의 경우는 쉬운 검색을 통하여 변이의 종류, 위치, 관련 질병 및 표현형, 표기되어 있는 논문 정보 등을 확인할 수 있고, 대용량의 변이 정보를 검색해야 하는 경우는 다운로드 버전을 통해 분석 파이프라인에 추가하여 활용할 수 있도록 제공되고 있다.

<그림 5. 데이터베이스 검색 시 제공되는 리포트>

.

이처럼 소개된 3가지의 솔루션은 현재 QIAGEN Bioinformatics의 제품군이다. QIAGEN은 Sample to Insight 전략으로 세계적으로 저명한 생물정보 기업들을 합병하면서 샘플 추출부터 생물정보 분석까지의 일련의 과정에서 연구자들이 문제를 직접 해결할 수 있는 환경을 만들고 있다.

하지만 단순히 솔루션만 보유한다고 정밀의학에 무조건 가까워지지는 않을 것이다. 구체적으로 어떤 임상 샘플을, 어떠한 기술을 이용하여, 질병과 연관된 해석을 통해 최종 결론을 내기까지 연구자들이 기술적인 부분을 많이 어려워하고 있다. 이러한 시장현황에 발맞춰 생물정보 기반의 임상유전체 분석 및 정밀의료 파이프라인 구축에 쉽게 활용 가능한 솔루션들과 컨설팅으로 (주)인실리코젠이 함께 할 것이다.

작성자 : Consulting팀 김경윤 선임

Posted by 人Co

2018/04/22 15:45 2018/04/22 15:45
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/279

인공지능의 양면성

인공지능이 우리 세상에 들어온다면 어떤 일이 일어날까?

로봇, 인공지능이 일상이 된 미래를 생각하면 “터미네이터(1984)”, “매트릭스(1999)”, “A.I(2001)”, "아이, 로봇(2004)”, “이글 아이(2008)”와 같은 영화들이 먼저 떠오른다. 이러한 영화에서 인공지능은 어떨 땐 인류를 위협하는 무기로, 또 어떨 땐 인공지능에 인간성을 부여하여 자신의 정체성에 고찰로 영화의 스토리를 그려나간다.


턱밑의 버튼을 누르면 가정용 로봇을 켤 수 있다.
예쁘게 포장되어 집으로 배송까지 완벽하게!
(사진출처 : http://www.channel4.com/programmes/humans)

영국에서 2015년도에 방영한 드라마에서 휴먼즈(Humans - 2015) 역시 로봇이 정체성과 자아를 찾아 나가는 과정을 그려내는 드라마이다. 그런데 드라마 시즌1의 1, 2편을 보면 우리의 일상에 스며든 로봇의 모습을 보여준다. 로봇은 이미 생활의 깊숙이 들어오면서 아버지의 노동을 대체하고, 보모, 간병인으로서 어머니의 역할을 대체하며, 인간만이 할 수 있다고 생각한 정신 상담사의 역할까지 로봇이 대체하는 모습을 보여준다. 영화에서 로봇의 이러한 모습은 가족으로서의 소외감을 가져오며, 순종적이며 자신의 말을 잘 들어주는 로봇으로부터 남편, 아내에게서도 느낄 수 없던 감정적 위안을 가져온다. 또한, 자녀들은 뭘 하더라도 로봇을 이길 수 없다는 박탈감에 인간으로서의 정체성을 위협받기도 한다. 이러한 로봇들은 일상생활에 인공지능이 스며들었을 때의 우리의 모습을 보는듯하여 터미네이터나 이글 아이 같은 영화처럼 극단적인 상황보다 더욱 현실적이고 무섭게 다가온다.

"7년이 걸려서 공부하면 뭐해 어차피 인조인간이 더 잘할 텐데!"
저 대사를 듣는 순간 정말 아무런 할 말이 떠오르지 않았다. 



인공지능. 머지않은 미래

인공지능은 "강한 인공지능" 과 "약한 인공지능"으로 나눈다. 약한 인공지능은 특정 지식에 대한 학습을 하고 이를 기반으로 결정을 내리는 인공지능이다. 약한 인공지능은 인공지능을 개발하는 사람이 몇 가지 기본적인 룰과 데이터를 입력하고 기계에 학습을 시켜 유의미한 결과를 판단하도록 한다. 그러므로 약한 인공지능은 목적에 따라 특정 데이터를 학습 및 판단하도록 개발되었으며 인공지능을 개발한 개발자의 목적에 따라 그 용도가 제한된다.

강한 인공지능은 소개한 영화와 드라마의 로봇들처럼 단순한 전문적 지식을 넘어 독립적인 자아를 가지고 있는 인공지능을 의미한다. 사물을 인지할 수 있는 지각 능력을 갖췄고, 이를 이해하고 생각과 결정을 내린다. 필요에 따라 스스로 데이터를 인지하고 학습하며, 보는 시각에 따라서 감정까지 있는 인공지능을 강한 인공지능이라고 정의한다. 강한 인공지능은 아직 현재 기술로 개발이 불가능하지만 여러 전문가들은 15~40년 뒤에 강한 인공지능 개발이 실질적으로 가능할 것으로 예측하고 있다.

강한 인공지능은 아직 개발되지 않았지만 약한 인공지능은 이미 수많은 개발이 이루어지고 활용되고 있다. 구글이 발표한 알파고는 난공불락의 섬이던 바둑을 점령하였고 자율 주행 자동차는 부분적으로나마 구현되어 테스트 중이며 몇몇 회사는 인공지능이 면접을 일부 대체하기 시작하였다.
약한 인공지능은 생각보다 실생활에도 많이 적용되어 있다. 자동차 자율운전의 1단계인 선택적 기능 제어는 이미 크루즈 기능으로 최근 차량에 탑재되었고 시리, 알렉스와 같은 음성인식 시스템은 언어의 수많은 억양을 학습하여 이를 단어로 인식할 뿐만 아니라 구글 번역 기능은 인공지능을 통해 훨씬 더 매끄럽고 자연스럽게 문장을 번역해준다. 또한, 페이스북은 우리가 올린 사진을 분석하여 촬영된 사람들에 대해 태그를 자동으로 달아주며, 유튜브, 구글 광고, 아마존에서는 우리가 자주 보고 흥미 있어 하는 주제를 토대로 맞춤형 동영상, 광고, 상품을 추천해준다.

인공지능은 이미 실생활에서 우리에게 좀 더 높은 질의 삶을 가져다주고 있으며 전문가들은 앞으로 인공지능으로 인해 발전할 미래 산업 가치는 무궁무진하다고 이야기한다. 하지만 인공지능이 우리의 장밋빛 미래만을 보장할까? 앞서 언급한 영화나 드라마에서처럼 인공지능이 양날이 검이 될 수 있다고 반박하는 전문가들도 많다.
이런 인공지능의 미래가치와 위험성에 대한 논쟁은 작년 7월 일론 머스크와 마크 저커버그가 트위터에서 벌인 논쟁 이후 본격화되었다.



인공지능은 문명 최대의 위협

테슬라의 CEO 일론 머스크는 과거부터 수차례 인공지능의 위험성을 경고하며 도입 이전에 선 규제부터 이루어져야 한다고 주장하였다.
테슬라는 FLI(자동작동 무기) 공동 질의서를 통해 인공지능이 탑재가 이루어진 자동 무기가 장착되면 큰 규모의 전쟁이 일어날 것이며, 전쟁 진행 과정도 사람이 인지하기 어려울 정도로 빨리 진행될 것이라 경고하였으며 이러한 인공지능 무기가 테러리스트들에게 넘어갔을 때 어떤 일이 일어날 수 있을지 주의해야 한다며 무기에 인공지능을 탑재하는 것은 판도라의 상자를 여는 행위가 될 수 있다고 경고하였다. 또한, 자율자동차에 대해서도 만약 자율자동차가 해킹될 경우 어떤 일이 일어나게 될지를 경고하며 인공지능의 도입 이전에 위험성을 인지하고 선 규제를 먼저 만들어야 한다고 주장하였다.

Wold Wide Web(WWW)의 창시자 중 한 명인 텀 버너스 리는 "기업용 인공지능이 회사의 수익을 위한 의사 결정을 하는 데 있어 기업의 공정성이 과연 유지될 수 있을까? 우리는 어떻게 받아들여야 하는가?" 라며 인공지능 도입의 위험성을 경고하였으며 (고)스티븐 호킹 교수, 빌 게이츠, 스티브 워즈니악 등 세계적 인사들 역시 인공지능이 강한 인공지능의 단계를 넘어선 "초인공지능" 단계에 접어들 경우 우리는 오히려 인공지능에 의해 지배받을 것이라고 경고하였다.

즉, 이들은 모두 사회가 인공지능에 지나치게 의존하게 될 경우, 인공지능이 여러 가지의 요인으로 우리가 예상할 수 없는 범위의 동작을 수행한다면 이미 되돌리기에는 늦을 것이라고 한목소리로 경고하고 있다.



인공지능의 미래 가치

위와 같은 여러 경고에도 불구하고 인공지능이 앞으로 우리에게 가져다줄 가치는 무궁무진하다. 글로벌 시장 조사 기관인 트랙티카 에서는 인공지능이 산업 전반에 걸쳐 영향을 미칠 것으로 예상하였으며 그 시장 규모는 2025년 기준 약 800억에 달할 것으로 예측하고 있다.


트랙티카 : 향후 (2016-2025) 인공지능 시장 전망
(출처 :
http://www.bioin.or.kr/board.do?num=259141&cmd=view&bid=policy)

많은 전문가가 산업 전반에 인공지능을 도입함으로써 상당량의 노동력과 인건비 절감을 가져 올 것으로 예측한다. 이는 이미 아르바이트 수를 줄이고 무인 주문기가 속속 도입되고 있는 식당만 보더라도 확인할 수 있다.

또한, 인공지능을 이용하여 인건비 이외에도 수많은 자원을 효율적으로 아낄 수 있다. 예를 들어 버스, 철도, 배, 항공 등의 대중교통에서 현재 이용객들을 분석하여 시간별 대중교통 이용량을 예측하고 효율적으로 배분한다거나, 현재의 노선을 효율적으로 재배치한다면 많은 자원의 소모를 줄일 수 있다.

개개인의 입장에서도 인공지능을 이용하여 간편하게 통역하고 자율 운전으로 편하게 이동할 수 있게 되며 각종 산업 분야에서 개인별 맞춤 서비스를 통해 좀 더 나은 서비스를 보장받을 수 있다. 인공지능의 도입을 통해 수많은 장점을 얻을 수 있는데 이를 포기할 이유가 전혀 없다는 것이다.



인공지능의 숙제

앞에서 언급하였듯이 인공지능의 발전은 우리에게 많은 위협이 될 수 있다. 약한 인공지능이더라도 인공지능을 적용하는 분야에 따라 책임자가 없는 살상 무기가 될 수 있으며, 소통과 공감, 윤리적 감정이 배제된 의사결정이 이루어질 수 있다. 그리고 강한 인공지능을 넘어선 초인공지능의 단계에 접어들면 인공지능의 감정과 판단에 의해 우리의 삶이 위협받을 수 있다.
하지만 그럼에도 불구하고 현재 이미 많은 분야에서 약한 인공지능이 적용되었으며, 이로 인해 경제적 가치뿐만 아니라 개인의 삶 역시 급속도로 상승하고 있다. 인공지능이 우리 삶에 가져다줄 혜택을 버릴 수는 없는 것이다.

최근에는 이러한 인공지능의 혜택과 위험의 양면성에서 적절한 발전과 규제의 협의점을 찾기 위한 움직임들이 보이고 있다. 대표적으로 전 세계적 인공지능 산업 및 학계 전문가 17명이 인공지능 100년 연구를 목적으로한 AI100 연구단을 만들어 인공지능의 미래를 연구한다. 이들은 인공지능의 위험성으로 인해 인공지능의 잠재적 능력이 훼손되지 않도록 인공지능의 장점에 대해 토론하고 분석하며 연구한다.

A100 연구단의 모태가 된 2009년 아실로마학술회의 참석자들

이외에도 인공지능의 규제에 관한 수많은 연구와 논의가 이루어지고 있으며, 이는 단순한 전문가 그룹을 넘어서 각 국가의 정책의 단계까지 논의되고 있다.

이미 인공지능이란 주사위가 던져졌다. 어느 정도 인공지능이 궤도에 오르기 전에는 위에서 언급한 각종 문제점을 정확하게 예측할 수는 없으나 지금 글을 쓰고 동안에도 인공지능은 발전하고 있으며, 이를 발전시키는 연구자들과 위험성을 경고하는 전문가간의 실랑이는 계속될 것이다. 인공지능의 활용과 규제 사이에서 적절한 합의점을 찾는 문제는 앞으로 계속 풀어나가야 할 숙제이다.

작성자 : 데이터사이언스센터 권대건 주임개발자

Posted by 人Co

2018/04/06 17:48 2018/04/06 17:48
Response
No Trackback , No Comment
RSS :
https://www.insilicogen.com/blog/rss/response/278



« Previous : 1 : 2 : 3 : 4 : 5 : ... 8 : Next »