** BANNER **
** BANNER END **
** MAIN **
** MAIN END **
** ADV **
** ADV END **
** FUNCTION **
주요 기능 소개
** FUNCTION IMG TABLE **
형질 예측 모델 구축
- 유전형 기반의 육종가 모델 구축
- 기계학습 알고리즘을 활용한 형질 예측 모델 구축
형질 예측
- 육종가 산출을 통한 genomic selection
- 패턴 인식 방식의 형질 예측
** FUNCTION IMG TABLE END **
** FUNCTION END **
** RESEARCH-Ex **
활용 사례
incoTRAIT은 연구에서 어떤 역할을 하는지 확인해보세요.
[Article]
-
Noh ES, Subramaniyam S, Cho S, Kim Y, Park C, Lee J, Nam B, Shin Y. Genotyping of Haliotis discus hannai and machine learning models to predict the heat resistant phenotype based on genotype. Front Genet. 2023 Mar 31
-
Yu GE, Shin Y, Subramaniyam S, Kang SH, Lee SM, Cho C, Lee SS, Kim CK. Machine learning, transcriptome, and genotyping chip analyses provide insights into SNP markers identifying flower color in Platycodon grandiflorus. Sci Rep. 2021 Apr 13;11(1):8019. doi: 10.1038/s41598-021-87281-0. PMID: 33850210; PMCID: PMC8044237.
-
Kang MJ, Shin AY, Shin Y, Lee SA, Lee HR, Kim TD, Choi M, Koo N, Kim YM, Kyeong D, Subramaniyam S, Park EJ. Identification of transcriptome-wide, nut weight-associated SNPs in Castanea crenata. Sci Rep. 2019 Sep 11;9(1):13161. doi: 10.1038/s41598-019-49618-8. PMID: 31511588; PMCID: PMC6739505.
-
Manavalan B, Subramaniyam S, Shin TH, Kim MO, Lee G. Machine-Learning-Based Prediction of Cell-Penetrating Peptides and Their Uptake Efficiency with Improved Accuracy. J Proteome Res. 2018 Aug 3;17(8):2715-2726. doi: 10.1021/acs.jproteome.8b00148. Epub 2018 Jul 2. PMID: 29893128.
** RESEARCH-Ex END **